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Abstract

Several techniques exist nowadays for continuous (i.e. numerical) data analysis and
modeling. However, although part of the information gathered by companies, statistical
offices and other institutions is numerical, a large part of it is represented using categor-
ical variables in ordinal or nominal scales. Techniques for model building on categorical
data are required to take advantage of such a wealth of information. In this paper, cur-
rent approaches to regression for ordinal data are reviewed and a new proposal is
described which has the advantage of not assuming any latent continuous variable
underlying the dependent ordinal variable. Estimation in the new approach can be
implemented using genetic algorithms. An artificial example is presented to illustrate
the feasibility of the proposal.
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1. Introduction

Thanks to the existing computational power, the ease of storage and the
availability of computer-based tools, companies and institutions gather and
store huge quantities of data from customers, suppliers, users or internal pro-
cesses. To exploit these huge sets (e.g., to extract relevant knowledge from
them), analytical software tools are required. Data analysis and data mining
are fields devoted to the construction and study of such tools.
In general, information is either represented by means of numerical or cat-

egorical data. In the numerical case, variables take values in a continuous do-
main. In the categorical case, variables take values in nominal scales (no
comparison between categories is possible), ordinal scales (scales where catego-
ries are totally ordered), partially ordered scales (with a partial order in the do-
main of categories), etc.
While model building for continuous data is a stable and classical matter

(numerical regression models are broadly known and used), analyzing and
building models for categorical data is far less unified. Indeed, existing tech-
niques for continuous data analysis are not easily exported to the categorical
case. This is so because not all operations that can be carried out on numbers
have their counterpart on categories: this is the case for arithmetical operations
used in computing regression for continuous variables.

1.1. Contribution and plan of this paper

This work deals with model building for ordinal data. Existing approaches
[1] either do not take ordinality into account or they assume that there is a
latent continuous variable underlying the dependent ordinal variable. We pres-
ent an extension of least-squares regression to ordinal data which, rather than
assuming it, builds an optimal numerical mapping between the categories of the
dependent variable and those of the independent variables.
The approach presented in this paper is especially appropriate for data min-

ing and model building based on survey data. Indeed, a substantial part of the
data collected from citizens by national statistical offices are ordinal but do not
have an obvious numerical interpretation (see [3]).
Section 2 reviews existing approaches to regression on categorical data and

highlights their weak points when applied to ordinal data. Section 3 introduces
the notation used in the rest of the paper and gives some background on linear
and non-linear regression for numerical variables. Section 4 presents our
approach to regression model building for ordinal data. Section 5 describes
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an application of our technique to a toy example with 3 variables and 14 ob-
jects. Section 6 contains some conclusions and suggestions for future work.
2. State of the art on regression models for ordinal data

When dependent variables are measured on an ordinal scale, there are many
options to build a model. These include:

• Ignoring the categories of the variable and treating it as nominal, i.e. using
Mlogit techniques (see [8] for an overview). The key problem here is loss of
efficiency. Ignoring the fact that the categories are ordered means not using
some of the information available, which may lead to estimating more
parameters than necessary. Even if parameter estimates should still be unbi-
ased, there is a high risk of obtaining non-significant results.

• Treating the dependent variable as though it were continuous (numerical).
In this case, categories in the ordinal scale are numbered consecutively
and plain least-squares regression is used as described in Section 3.1.
This easy and common choice is reasonable when the dependent variable
has a large number of categories (5 or more). In case of doubt, some truly
ordinal approach (see below) should be used to confirm that the continuity
assumption for the dependent variable does not result in significant
distortions.

• Treating the variable as though it were measured on an ordinal scale, but the
ordinal scale represented crude measurements of an underlying continuous
variable. For example, the categories ‘‘Cold, Cool, Warm, Hot’’ can be seen
as rough measures of a continuous variable Temperature. In this case, an
ordered logit model such as PLUM can be used [7].

• Considering the dependent variable as measured on a true ordinal scale.
This may be the most sensible option for ordinal variables which cannot
be regarded as crude measurements of an underlying continuous variable.
This is the case for professional rank, e.g. ‘‘Parson, Bishop, Archbishop’’.
There is a lack of regression models that can take advantage of ordinality
without assuming underlying continuous variables. The purpose of this
paper is precisely to propose one such model.
3. Notation and background

In this section, we describe the notation used throughout this paper, which
follows the one in [2]. Also, least-squares regression for numerical data is
briefly recalled for later use.
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We assume a two-dimensional table where one dimension corresponds to
the set of objects (denoted by O = {o1, . . . ,oM}) and the other dimension cor-
responds to the set of variables (denoted by V = {V0,V1,V2, . . . ,VN}). For
each pair (object, variable), the table contains the value that object takes for
variable. The table can be modeled as a function

V : O! DðV 0Þ � DðV 1Þ � DðV 2Þ � � � � � DðV N Þ

where D(Vi) corresponds to the range of Vi (we denote by jD(Vi)j the cardinal-
ity of D(Vi)).
For simplicity, and without loss of generality, the N-dimensional function V

can be split into N one-dimensional functions (Vi(Æ) :O! D(Vi)) that assign a
value for variable Vi to a given object. Equivalently, V is assumed to be of the
form

VðOÞ ¼ ðV 0ðOÞ; V 1ðOÞ; V 2ðOÞ; . . . ; V NðOÞÞ ð1Þ
with the representation above, building a model means defining a mapping be-
tween the ranges of variables. Without loss of generality, we assume in what
follows that the dependent variable is V0. In this case, building a model is find-
ing a function

F : DðV 1Þ � DðV 2Þ � � � � � DðV N Þ ! DðV 0Þ
such that FðV 1ðOÞ; . . . ; V N ðOÞÞ is similar to V0(O). We will denote by V̂ 0ðOÞ
the estimation of V0(O) (i.e., V̂ 0ðOÞ ¼ FðV 1ðOÞ; . . . ; V N ðOÞÞÞ.

3.1. Linear regression for continuous data

When F is restricted to be a linear model, we have that

V̂ 0ðOÞ ¼ b1V 1ðOÞ þ . . .þ bNV N ðOÞ
In this case, building the model requires determining parameters bi for
i = 1, . . . ,N. A way to do this is to use the least squares method. This is ‘‘to
find the model output with the minimal sum of squared error loss function
value’’ [10]. Using matrices and vectors, the solution of that minimization
problem can be expressed by:

b ¼ ðXTXÞ	1XTV0 ð2Þ

where b = {b1, . . . ,bN}, V0 = {V0(o1), . . . ,V0(oM)} and where X is the matrix V
without the column corresponding to variable V0, i.e. X = {V1, . . . ,VN}.

3.2. Non-linear regression for continuous data

The model (2) is linear with respect to the variables considered. Even if the
relationship between variables is known to be non-linear, it can be linearized by
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using transformations on variables. A typical example is using log or exp trans-
formations to turn an exponential or a logarithmic regression into a linear one.
As [10] points out, ‘‘intelligent preprocessing can often reduce the complexity
by simplifying non-linear to linear optimization problems’’.
4. A new approach for ordinal regression

Let us now consider the process of building a model for categorical variables
in ordinal scales, i.e. a model for domains where elements can be compared but
not operated. We want a model taking ordinality into account but not assuming
any continuous variable underlying the ordinal variables. Our proposal builds
on the least-squares regression for continuous data recalled in Section 3.1.
Two main difficulties appear when trying to use a continuous model on ordi-

nal data:

(1) Addition and multiplication are not defined on ordinal scales.
(2) The mapping of the ordinal scale into a continuous domain is not unique.

The first difficulty is that least-squares regression as described above cannot
be used directly on ordinal data. Arithmetical operations are not possible on
ordinal data and alternative operators are needed. However, the only well-
known and accepted operators for ordinal scales are the minimum and maxi-
mum. To avoid the definition of new categorical operators (as in e.g., [5]),
we propose to map ordinal data into the unit interval [0, 1] and then use least
squares regression on that interval. Let us denote the mapping of variable Vi

into [0,1] by fi.
The second difficulty is how to determine the mapping fi for each variable

Vi. This is not straightforward. For each variable Vi, there exist several map-
pings fi :D(Vi)! [0, 1]. If the domain of variable Vi consists of k categories
D(Vi) = {c1, . . . ,ck}, the simplest definition is fi(cj) = j/jD(Vi)j. This definition
(as any other possible definition) adds, as it were, shape to the domain, i.e. it
fixes the difference between two consecutive categories. Consequently, the par-
ticular mapping chosen shapes (and strongly biases) the final regression model.
Since we are not assuming any continuous variable underlying the ordinal

ones, it would be especially awkward to let the numerical mapping fi bias
the resulting model. Our approach is not to fix the mapping beforehand but
to include the estimation of the best mapping functions fi in the model con-
struction. According to this, the problem to be solved can be formulated as
follows:

Definition 1. Let V be the data as defined in Section 3. Building the model can
be defined as finding bi and fi that minimize the following expression:
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X
j¼1;M

X
i¼1;N

bifiðV iðojÞÞ 	 f0ðV 0ðojÞÞ
 !2

ð3Þ

It is important to note that, once the fi are known, coefficients bi are deter-
mined as described in Section 3.1.
4.1. Optimization using genetic algorithms

To solve the optimization problem stated in Definition 1, we use genetic
algorithms. Our approach follows the type of genetic algorithm given in
Appendix B of [6]. For a more detailed and comprehensive description of ge-
netic algorithms, see [9,4].
We use the fact that the selection of the mappings fi induces the vector b.

According to this, the problem can be reduced to finding functions fi that min-
imize Expression (3) (with b computed as in Expression (2)).
Genetic algorithms require possible solutions to be encodable as chromo-

somes, i.e. binary strings. According to the above discussion, the only objects
to be represented in a chromosome are the functions fi. In the following sub-
sections, we describe how these functions are encoded into chromosomes
and what is the fitness function applied for evaluating chromosomes and guid-
ing towards the optimal solution.

4.1.1. Coding

In our case, each set of functions {fi}i2{1,. . .,N} is a possible solution. We en-
code each function fi as a vector of jD(Vi)j + 1 integers ðn1; . . . ; njDðV iÞjþ1Þ. From
such a vector, f(ci) is defined as:

f ðciÞ ¼
P

j6injP
j¼1;jDðV iÞjþ1nj

Note that this expression defines a monotonic mapping into [0,1], but it is not
necessary that, for the largest category cjDðV iÞj, the equality fiðcjDðV iÞjÞ ¼ 1 holds.
In general, we are not interested in fiðcjDðV iÞjÞ ¼ 1 because this would force all
variables to have the same numerical domain. We allow different variables to
map their categorical domain into different numerical domains (these being
subsets of [0, 1]).
Vector ðn1; . . . ; njDðV iÞjþ1Þ is translated into a binary representation to obtain

a chromosome (each integer component is translated into its corresponding
binary equivalent).

4.1.2. Fitness function

Application of genetic algorithms requires a function (the fitness function)
to evaluate each chromosome. This function is defined using Expression (3).
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However, as this latter expression is to be minimized and the fitness function is
usually to be maximized, we define the fitness function as

1=Expression (3)

In the above expression, bi corresponds to the parameters of the linear model
computed using Expression (2).

4.1.3. Genetic operators

Genetic algorithms are an iterative technique, where in each iteration the best
chromosomes of the population (the set of functions with a better linear model)
survive and are the basis of the next population. Here, ‘‘best chromosomes’’
mean chromosomes that evaluate best in relation to the fitness function.
In our case, the next population is built by random selection of chromo-

somes from the previous population. The probability of selecting a chromo-
some chri is proportional to the fitness of this chromosome. Equivalently,
the probability of selecting chri is fitness ðchriÞ=

P
j fitnessðchrjÞ. Selected chro-

mosomes are crossed over with low (fixed) probability and then the value of
each bit of the resulting chromosomes is tweaked with a certain (fixed) muta-
tion probability.
5. Application

In this section, we give an example application of the method described in
the previous section. We first introduce the example.

Example 1. Let V0, V1 and V2 be three categorical variables on ordinal scales.
Let

L0 ¼ fa1; a2; a3; a4g
L1 ¼ fb1; b2; b3; b4; b5; b6; b7; b8g
L2 ¼ fc1; c2; c3; c4; c5; c6; c7g

be the ranges of variables V0,V1 and V2, respectively. Let <L0 , <L1 and <L2 be
order relations defined on L0, L1 and L2 according to the position of categories
in these sets (e.g. ai<L0aj if i < j). Then, consider the set of records

R ¼ fr1; . . . ; r14g
in Table 1. A graphical representation of these records is given in Fig. 1. This rep-
resentation shows that V0 is a monotonically increasing function of V1 and V2.

To apply genetic algorithms to Example 1, we have defined a population of
50 chromosomes each consisting of (jD(V0)j + 1) + (jD(V1)j + 1) + (jD(V2)j +
1) = 5 + 9 + 8 = 22 integers. Binary translation uses 10 bits for each integer,
which yields 220-bit chromosomes.



Table 1
Records used for building a linear model

Objects V0 V1 V2

o1 a1 b1 c1
o2 a1 b2 c2
o3 a1 b3 c2
o4 a2 b3 c3
o5 a2 b4 c3
o6 a2 b4 c4
o7 a3 b5 c3
o8 a3 b5 c4
o9 a3 b6 c5
o10 a3 b7 c5
o11 a3 b7 c6
o12 a4 b8 c6
o13 a4 b7 c7
o14 a4 b8 c7

a1

a1 a1

a2 a2 a3

a2 a3

a3

a4

V1

V2

a3

a3

a4

a4

Fig. 1. Graphical representation of the records in Table 1.
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The algorithm described in Section 4.1 has been applied and 10000 itera-
tions have been computed. The best solution after these iterations leads to a
fitness equal to:

fitnessðbest chromosomeÞ ¼ 1975:726
This corresponds to a distance (using Expression (3)) equal to 5.06 · 10	4. The
best solution found consists of the following functions f0, f1 and f2:

f0ða1Þ ¼ 0:23; f 0ða2Þ ¼ 0:39; f 0ða3Þ ¼ 0:66; f 0ða4Þ ¼ 0:90
f1ðb1Þ ¼ 0:06; f 1ðb2Þ ¼ 0:26; f 1ðb3Þ ¼ 0:39; f 1ðb4Þ ¼ 0:45
f1ðb5Þ ¼ 0:58; f 1ðb6Þ ¼ 0:65; f 1ðb7Þ ¼ 0:78; f 1ðb8Þ ¼ 0:94
f2ðc1Þ ¼ 0:21; f 2ðc2Þ ¼ 0:21; f 2ðc3Þ ¼ 0:24; f 2ðc4Þ ¼ 0:39
f2ðc5Þ ¼ 0:58; f 2ðc6Þ ¼ 0:71; f 2ðc7Þ ¼ 0:84
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Using these functions f0, f1 and f2, the best model found is:

V̂ 0ðOÞ ¼ 1:30175 � V 1ðOÞ þ 0:67221 � V 2ðOÞ
6. Conclusions and future work

We have introduced in this paper a method for building models for categor-
ical data in ordinal domains. The method does not assume any continuous var-
iable underlying the ordinal ones. Instead, optimal mapping functions from
each categorical domain into the unit interval are found and then a linear
model in the latter domain is built. The search of the optimal mapping func-
tions is performed using genetic algorithms. The method has been applied to
a toy example to show the feasibility of the approach.
The complexity of the proposed solution is O(K Æ N Æ N ÆM) for each itera-

tion, N being the number of variables,M the number of objects and K the num-
ber of chromosomes in each population. By avoiding the repetition of some
computations, the complexity can be reduced to O(K Æ N Æ M) assuming that
M > N. Our current implementation performs 17 iterations per second on a
desktop PC (using a Java implementation running under a Linux OS).
The genetic algorithm used in Section 5 is rather simple. As the number of

objects in Example 1 is pretty small, a large number of iterations is still possi-
ble. For a higher number of objects, the operators used and the coding of the
solutions could be improved to speed up the convergence of the genetic search.
Our current implementation displays an oscillating behaviour of the best fitness
in each iteration.
The method proposed in this paper is the ordinal counterpart of numerical

linear least-squares regression described in Section 3.1. However, it should be
noted that our method can also be regarded as the counterpart of numerical
non-linear models such as those described in Section 3.2. This is so because,
in the case of ordinal variables, the mapping from the ordinal scale into the
continuous one is not fixed a priori, and when fixed, the mapping shapes the
space (this has an effect similar to using log or exp transformations on numer-
ical variables).
Future work includes the application of the technique proposed in this

paper to a real application and the extension of this methodology to other
types of models (e.g. any non-linear model).
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