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Abstract

Very recently, a (fuzzy modal) logic to reason about coherent conditional probability, in the sense of de Finetti,
has been introduced by the authors. Under this approach, a conditional probability �ð� j �Þ is taken as a primitive

notion defined over conditional events of the form ‘‘’ given  ’’, ’j for short, where  is not the impossible event.

The logic, called FCP(L�), exploits an idea already used by Hájek and colleagues to define a logic for

(unconditional) probability in the framework of fuzzy logics. Namely, we take the probability of the conditional
event ‘‘’j ’’ as the truth-value of the (fuzzy) modal proposition Pð’ j  Þ, read as ‘‘’j is probable’’. The logic

FCP(L�), which is built up over the many-valued logic L�1
2 (a logic which combines the well-known Lukasiewicz

and Product fuzzy logics), was shown to be complete for modal theories with respect to the class of probabilistic

Kripke structures induced by coherent conditional probabilities. Indeed, checking coherence of a (generalized)
probability assessment to an arbitrary family of conditional events becomes tantamount to checking consistency

of a suitably defined theory over the logic FCP(L�). In this paper we provide further results for the logic FCP(L�).

In particular, we extend the previous completeness result by allowing the presence of non-modal formulas in the
theories, which are used to describe logical relationships among events. This increases the knowledge modelling

power of FCP(L�). Then, we improve the results concerning checking consistency of suitably defined theories in

FCP(L�) to determine coherence by showing parallel results w.r.t. the notion of generalized coherence when dealing

with imprecise assessments. Moreover we also show and discuss compactness results for our logic. Finally, FCP(L�)
is shown to be a powerful tool for knowledge representation. Indeed, following ideas already investigated in

the related literature, we show how FCP(L�) allows the definition of suitable notions of default rules which

enjoy the core properties of nonmonotonic reasoning characterizing system P and R.

Keywords: Fuzzy Logics, Conditional Probability, Coherence, Generalized Coherence, Compactness, Default

Reasoning.

1 Introduction: conditional probability and fuzzy logic

Probability theory is certainly the most well-known and deeply investigated formalism
between those that aim at modelling reasoning under uncertainty. Such a research has had a
remarkable influence also in the field of logic. Indeed, many logics which allow reasoning
about probability have been proposed, some of them rather early. We may cite [3, 13, 14, 17,
18, 25, 30, 37–43] as some of the most relevant references. Besides, it is worth mentioning
the recent book [27] by Halpern, where a deep investigation of uncertainty representations
(not only probability) and uncertainty logics is presented. In general, all the above logical
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formalisms present some kind of probabilistic operators but all of them, with the exception
of [18], are based on the classical two valued-logic.

An alternative treatment, originally proposed in [23] and further elaborated in [22] and in
[20], allows the axiomatization of uncertainty measures in the framework of fuzzy logic. The
basic idea is to consider, for each classical (two-valued) proposition ’, a (fuzzy) modal
proposition P’, which reads ‘‘’ is probable’’, and taking as truth-degree of P’ the
probability of ’. Then one can define theories about the P’’s over a particular fuzzy logic
including, as axioms, formulas corresponding to the basic postulates of probability theory.
The advantage of such an approach, with respect to the previously mentioned ones, is that
algebraic operations needed to compute with probabilities (or with any other uncertainty
model) are embedded in the connectives of the many-valued logical framework, resulting in
clear and elegant formalizations.

In reasoning with probability, a crucial issue concerns the notion of conditional probability.
Traditionally, given a probability measure � on an algebra of possible worlds W, if the agent
observes that the actual world is in A � W , then the updated probability measure �ð� j AÞ,
called conditional probability, is defined as �ðB j AÞ ¼ �ðB \ AÞ=�ðAÞ, provided that
�ðAÞ > 0. If �ðAÞ ¼ 0 the conditional probability remains then undefined. This yields both
philosophical and logical problems. For instance, in [20] where the logic FP(L�) is presented,
conditional probability statements are handled by formulas Pð’ j  Þ which denote an
abbreviation for P !� Pð’ ^  Þ. Such a definition exploits the properties of Product logic
implication !�, whose truth function behaves like a truncated division:

eð� !� �Þ ¼
1, if eð�Þ � eð�Þ

eð�Þ=eð�Þ, otherwise:

�

However, with such a logical modelling, whenever the probability of the conditioning event �
is 0, Pð’ j �Þ takes as truth-value 1. Therefore, this yields problems when dealing with zero
probabilities. Two well-known proposals which aim at solving this problem consist in either
adopting a non-standard probability approach (where events are measured on the hyper-real
interval [0, 1] rather than on the usual real interval), or in taking conditional probability as a
primitive notion. In the first case [26, 28, 33], the assignment of zero probability is only
allowed to impossible events, while other events can take on an infinitesimal probability. This
clearly permits to avoid situations in which the conditioning event has null probability. The
second approach (that goes back to de Finetti, Rényi and Popper among others) considers
conditional probability and conditional events as basic notions, not derived from the notion
of unconditional probability, and provides adequate axioms. Coletti and Scozzafava’s book
[10] includes a rich elaboration of different issues of reasoning with coherent conditional
probability, i.e. conditional probability in de Finetti’s sense. We take from there the following
definition.

DEFINITION 1.1 ([10])
Let G be a Boolean algebra and let B � G be closed with respect to finite unions (additive
set). Let B

0
¼ B n f;g. A conditional probability on the set G � B

0 of conditional events,
denoted as EjH , is a function � : G � B

0
! ½0; 1� satisfying the following axioms:

(1) �ðH j H Þ ¼ 1, for all H 2 B
0

(2) �ð� j H Þ is a (finitely additive) probability on G for any given H 2 B
0

(3) �ðE \ A j H Þ ¼ �ðE j H Þ � �ðA j E \ H Þ, for all A 2 G and E,H ,E \ H 2 B
0.
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Two different logical treatments based respectively on the above two solutions have been
recently proposed, both using a fuzzy logic approach as the one mentioned above. In fact,
they both define probability logics over the fuzzy logic L�1

2, which combines the well-known
Lukasiewicz and Product fuzzy logics. In [15] Flaminio and Montagna introduced the logic
FP(SL�) whose models include non-standard probabilities. On the other hand, we
introduced in [36] the logic FCP(L�) in whose models conditional probability is a primitive
notion. FCP(L�) is equipped with a modal operator P directly defined over conditional
events of the form ’j�. Unconditional probability, then, arises as non-primitive whenever the
conditioning event is a (classical) tautology. The obvious reading of a statement like Pð’ j �Þ
is ‘‘the conditional event ‘‘’ given �’’ is probable’’. Similarly to the case mentioned above,
the truth-value of Pð’ j �Þ is given by the conditional probability �ð’ j �Þ. A completeness
result of FCP(L�) with respect to a class of Kripke structures suitably equipped with a
conditional probability is shown in [36]. Moreover, it is also shown that checking the
coherence of an assessment to a family of conditional events, in the sense of de Finetti, Coletti
and Scozzafava1, is tantamount to checking consistency2 of a suitably defined theory in
FCP(L�).

In this paper, after this introduction, we provide in the next section the necessary
background notions about the fuzzy logic L�1

2. In the third and fourth sections we present
the logic FCP(L�), we review its semantics, solving some technical problems in [36], and we
enhance the completeness result given in [36]. Indeed, in that paper completeness was proved
with respect to (finite) modal theories, i.e. theories only including modal (probabilistic)
formulas. Although they are the most interesting kind of formulas, this clearly restricted the
type of deductions allowed. In Section 4, we provide completeness results for general (finite)
theories, i.e. theories including both modal and non-modal formulas, and adapted to the
modified semantics. This will allow to represent logical relationships between events in the
theories. In Section 5, we will be concerned with coherence of both precise and imprecise
assessments of conditional probability. Starting from the result in [36] which makes explicit
the link between coherence of rational assessments and theories in our logic, we prove that
such a result can be generalized so as to deal with imprecise assessments of probability, i.e. all
those situations in which we cannot provide but lower (or upper) bounds for the assessments.
We also see how to capture the concepts of lower and upper coherent conditional
probabilities presented in [10] under our framework. Moreover, in Section 6 we generalize a
result obtained by Flaminio [16] on the compactness of our logic for coherent assessments,
and we discuss a different approach to obtain similar compactness results. To conclude, in
Section 7 we show that FCP(L�) is a powerful tool from the knowledge representation point
of view. Indeed, many complex statements, both quantitative and qualitative, concerning
conditional probabilities can be represented, as well as suitable notions of default rules which
capture the core properties of nonmonotonic reasoning carved in system P and in some
extension.

1Roughly speaking, an assessment to an arbitrary family of conditional events is called coherent when it can be

extended to a whole conditional probability [10].
2Notice that this is just a formal equivalence with no aim of providing a study of computational complexity of the

coherence test of conditional probabilities.
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2 Preliminaries: the L�1
2 logic

The language of the L� logic is built in the usual way from a countable set of propositional
variables, three binary connectives !L (Lukasiewicz implication), � (Product conjunction)
and !� (Product implication), and the truth constant �0. A truth-evaluation is a mapping e
that assigns to every propositional variable a real number from the unit interval [0, 1] and
extends to all formulas as follows:

eð�0Þ ¼ 0, eð’!L  Þ ¼ minð1� eð’Þ þ eð Þ, 1Þ,

eð’�  Þ ¼ eð’Þ � eð Þ, eð’!�  Þ ¼
1, if eð’Þ � eð Þ
eð Þ=eð’Þ, otherwise

:

�

The truth constant 1 is defined as ’!L ’. In this way we have eð1Þ ¼ 1 for any truth-
evaluation e. Moreover, many other connectives can be defined from those introduced above:

:L’ is ’!L
�0, :�’ is ’!�

�0,
’ ^  is ’&ð’!L  Þ, ’ _  is :Lð:L’ ^ :L Þ,
’�  is :L’!L  , ’& is :Lð:L’�:L Þ,
’	  is ’&:L , ’ 
  is ð’!L  Þ&ð !L ’Þ,
�’ is :�:L’, r’ is :�:�’,

with the following interpretations:

eð:L’Þ ¼ 1� eð’Þ, eð:�’Þ ¼
1, if eð’Þ ¼ 0

0, otherwise

�
,

eð’ ^  Þ ¼ minðeð’Þ, eð ÞÞ, eð’ _  Þ ¼ maxðeð’Þ, eð ÞÞ,

eð’�  Þ ¼ minð1, eð’Þ þ eð ÞÞ, eð’& Þ ¼ maxð0, eð’Þ þ eð Þ � 1Þ,

eð’	  Þ ¼ maxð0, eð’Þ � eð ÞÞ, eð’ 
  Þ ¼ 1� jeð’Þ � eð Þj,

eð�’Þ ¼
1, if eð’Þ ¼ 1

0, otherwise

�
, eðr’Þ ¼

1, if eð’Þ > 0

0, otherwise

�
:

The logic L� is defined Hilbert-style as the logical system whose axioms and rules are the
following3:

(1) Axioms of Lukasiewicz Logic:
(L1) ’!L ð !L ’Þ
(L2) ð’!L  Þ !L ðð !L �Þ !L ð’!L �ÞÞ
(L3) ð:L’!L :L Þ !L ð !L ’Þ
(L4) ðð’!L  Þ !L  Þ !L ðð !L ’Þ !L ’Þ

(2) Axioms of Product Logic4:
(A1) ð’!�  Þ !� ðð !� �Þ !� ð’!� �ÞÞ
(A2) ð’�  Þ !� ’
(A3) ð’�  Þ !� ð � ’Þ

3This definition, proposed in [8], is actually a simplified version of the original definition of L� given in [11].
4Actually Product logic axioms also include axiom A7 [�0 !� ’] which is redundant in L�.
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(A4) ð’� ð’!�  ÞÞ !� ð � ð !� ’ÞÞ
(A5a) ð’!� ð !� �ÞÞ !� ðð’�  Þ !� �Þ
(A5b) ðð’�  Þ !� �Þ !� ð’!� ð !� �ÞÞ
(A6) ðð’!�  Þ !� �Þ !� ððð !� ’Þ !� �Þ !� �Þ
(�1) :�:��!� ððð’� �Þ !� ð � �ÞÞ !� ð’!�  ÞÞ
(�2) ’ ^ :�’!�

�0
(3) The following additional axioms relating Lukasiewicz and Product logic connectives:

ð:Þ :�’!L :L’
ð�Þ �ð’!L  Þ 
 �ð’!�  Þ
ðL�Þ ’� ð 	 �Þ 
 ð’�  Þ 	 ð’� �Þ

(4) Deduction rules of L� are modus ponens for !L (modus ponens for !� is derivable),
and necessitation for �: from ’ derive �’:

The logic L�1
2 is the logic obtained from L� by expanding the language with a

propositional variable 1
2 and adding the axiom:

ðL�
1

2
Þ

1

2

 :L

1

2

Obviously, a truth-evaluation e for L� is easily extended to an evaluation for L�1
2 by further

requiring eð12Þ ¼
1
2.

From the above axiom systems, the notion of proof from a theory (a set of formulas) in
both logics, denoted ‘L� and ‘L�1

2
respectively, is defined as usual. Strong completeness of

both logics for finite theories with respect to the given semantics has been proved in [11].
In what follows we will restrict ourselves to the logic L�1

2.

THEOREM 2.1
For any finite set of formulas T and any formula ’ of L�1

2, we have T ‘L�1
2
’ iff eð’Þ ¼ 1 for

each truth-evaluation e which is a model5 of T.

As it is also shown in [11], for each rational r 2 ½0, 1� a formula r is definable in L�1
2 from

the truth constant 1
2 and the connectives, so that eðrÞ ¼ r for each evaluation e. Therefore, in

the language of L�1
2 we have a truth constant for each rational in [0, 1], and due to

completeness of L�1
2, the following book-keeping axioms for rational truth constants are

provable:

ðRL�1Þ :Lr 
 1� r, ðRL�2Þ r !L s 
 minð1, 1� r þ sÞ,
ðRL�3Þ r � s 
 r � s, ðRL�4Þ r !� s 
 r )P s,

where r )P s ¼ 1 if r � s, r )P s ¼ s=r otherwise.

3 A logic of conditional probability

In this section we describe the fuzzy modal logic FCP(L�) –FCP for Fuzzy Conditional
Probability–, built up over the many-valued logic L�1

2 described in the previous section.
In what follows, given a set D � L of non-modal formulas, we will denote by Con(D) the

5We say that an evaluation e is a model of a theory T whenever eð Þ ¼ 1 for each  2 T .
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set of non-modulas formulas ’ which follow from D in Classical propositional logic.
Furthermore, TautðLÞ � L will denote the set of classical tautologies and SatðLÞ � L

the set of (classically) satisfiable formulas. In other words, TautðLÞ ¼ Conð;Þ and
SatðLÞ ¼ f’ j :’ 62 Conð;Þg.

The language of FCP(L�) is defined in two steps:

Non-modal formulas: they are built from a set V of propositional variables
fp1, p2, : . . . pn, . . .g using the classical binary connectives ^ and :. Other connectives like
_, ! and $ are defined from ^ and : in the usual way. Non-modal formulas (we will also
refer to them as Boolean propositions) will be denoted by lower case Greek letters ’,  , etc.
The set of non-modal formulas will be denoted by L.

Modal formulas: they are built from elementary modal formulas of the form Pð’ j �Þ,
where ’ and � are non-modal formulas with � 2 SatðLÞ, using the connectives of L� (!L, &,
�, !�, etc.) and the truth constants r, for each rational r 2 ½0, 1�. We shall denote them by
upper case Greek letters �, �, etc. Notice that we do not allow nested modalities.

DEFINITION 3.1
The axioms of the logic FCP(L�) are the following:

(1) The set TautðLÞ of tautologies of classical propositional logic
(2) Axioms of L�1

2 for modal formulas
(3) Probabilistic modal axioms:

ðFCP1Þ Pð’!  j �Þ !L ðPð’ j �Þ !L Pð j �ÞÞ
ðFCP2Þ Pð:’ j �Þ 
 :LPð’ j �Þ
ðFCP3Þ Pð’ _  j �Þ 
 ððPð’ j �Þ !L Pð’ ^  j �ÞÞ !L Pð j �Þ
ðFCP4Þ Pð’ ^  j �Þ 
 Pð j ’ ^ �Þ � Pð’ j �Þ
ðFCP5Þ Pð� j �Þ

Deduction rules of FCP(L�) are those of L� (i.e. modus ponens and necessitation for �),
plus:
(4) necessitation for P: from ’ derive Pð’ j �Þ
(5) substitution of equivalents for the conditioning proposition:

from �$ �0, derive Pð’ j �Þ 
 Pð’ j �0Þ

REMARK

The restriction imposed in the definition of elementary modal formulas that � in a formula
Pð’ j �Þ must belong to SatðLÞ is implicitly assumed in all the above axiom schemes and
rules.

Due to the peculiar definition of the language, any theory (set of formulas) will be of the kind
� ¼ D [ T , where D contains only non-modal formulas and T contains only modal formulas.
Notice that in the above axioms and rules, there is no interplay between both kinds of
formulas except for the inference rules of necessitation and substitution of equivalents, which
allow the derivation of modal formulas from non-modal ones (but not vice-versa). Therefore,
given an initial theory � ¼ D [ T, reasoning on non-modal formulas does not play an actual
role in deductions from �, but it is just a way of generating new modal formulas to be
considered with T. On the other hand, in proofs from �, we want to avoid the application of
the above inference rules yielding modal formulas with conditioning events contradictory
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with D, since they would easily lead to inconsistencies. As an example, if D ¼ f:pg, where p
is a propositional variable, then from D one could derive Pð:p j pÞ by applying the
necessitation rule, which is in clear contradiction with Pðp j pÞ, an instance of axiom (FCP5).
Therefore, we are led to define in FCP(L�) the notion of proof from a theory, written ‘FCP ,
in a non standard way, at least when the theory contains non-modal formulas. In what follows
D denotes a propositional theory, T a modal theory, ’ a non-modal formula and � a modal
formula.

DEFINITION 3.2
The proof relation ‘FCP between sets of formulas and formulas is defined by:

(1) D [ T ‘FCP ’ if ’ 2 ConðDÞ

(2) T ‘FCP � if � follows from T in the usual way from the above axioms and rules.
(3) D [ T ‘FCP � if T [DP ‘FCP �,

where DP ¼ fPð’ j �Þ : ’ 2 ConðDÞ, :� 62 ConðDÞ and � appears as conditioning in
subformulas of �g

Notice that the general lateral condition for all modal formulas that � 2 SatðLÞ, as well as the
conditions ’ 2 ConðDÞ and :� 62 ConðDÞ for the consequence relation, are decidable, so the
notion of proof is well-defined.

EXAMPLE 3.3
As an example of deduction, we show how to prove that conditional probability preserves
classical equivalence, i.e. that ’$  ‘FCP Pð’ j �Þ 
 Pð j �Þ, where � 2 SatðLÞ. From
D ¼ f’$  g, by definition of DP, we get Pð’$  j �Þ 2 DP , hence we derive it. Now, since
ð’$  Þ ! ð’!  Þ is a Boolean tautology, by necessitation we obtain
Pðð’$  Þ ! ð’!  Þ j �Þ. By applying FCP1 and modus ponens with Pð’$  j �Þ we
derive Pð’!  j �Þ, and again by FCP1 and modus ponens we get Pð’j�Þ !L Pð j�Þ.
Similarly, starting from ð’$  Þ ! ð ! ’Þ, we derive Pð j�Þ !L Pð’j�Þ as well. Finally,
by reasoning in L� we derive ðPð’j�Þ !L Pð j�ÞÞ&ðPð j�Þ !L Pð’j�ÞÞ, hence we have
shown ’$  ‘FCP Pð’ j �Þ 
 Pð j �Þ.

The semantics for FCP(L�) is given by conditional probability Kripke structures
M ¼ hW ,U, e,�i, where:

� W is a non-empty set of possible worlds.
� e : V �W ! f0, 1g provides for each world a Boolean (two-valued) evaluation of the

propositional variables, that is, eðp,wÞ 2 f0, 1g for each propositional variable p 2 V and
each world w 2 W . A truth-evaluation eð�,wÞ is extended to Boolean propositions as
usual. For a Boolean formula ’, we will write ½’�W ¼ fw 2 W j eð’,wÞ ¼ 1g.

� � : U � U0 ! ½0, 1� is a conditional probability over U � U0, where U is a Boolean
algebra of subsets of W6, U0 ¼ Unf;g, and such that ð½’�W , ½��W Þ is �-measurable for all
non-modal ’ and � (with ½��W 6¼ ;).

� eð�,wÞ is extended to elementary modal formulas by defining

eðPð’ j �Þ,wÞ ¼ �ð½’�W j ½��W Þ, if ½��W 6¼ ;

6Notice that in our definition the factors of the Cartesian product are the same Boolean algebra. This is clearly a

special case of what is stated in Definition 1.1.
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and we leave eðPð’ j �Þ,wÞ undefined otherwise7. Then e is extended to arbitrary modal
formulas, when possible, according to L�1

2 semantics, that is:

eðr ,wÞ ¼ r ,

eð� !L �,wÞ ¼ minð1� eð�,wÞ þ eð�,wÞ, 1Þ,

eð���,wÞ ¼ eð�,wÞ � eð�,wÞ,

eð� !� �,wÞ ¼
1, if eð�,wÞ � eð�,wÞ

eð�,wÞ=eð�,wÞ, otherwise
:

�

We call a Kripke structure M ¼ hW ,U, e,�i safe for a formula � if eð�,wÞ is defined for
every world w. Trivially, any Kripke structure is safe for all non-modal formulas. If � is
modal andM is safe for it, then observe that the truth-evaluation eð�,wÞ depends only on the
conditional probability measure � and not on the particular world w. In this case, we will also
write eM ð�Þ to denote eð�,wÞ for any w 2 W.

IfM is safe for �, then we say thatM is a model for �, writtenM 
 �, if eM ð�Þ ¼ 1. If T is
a set of formulas, we say that M is a model of T if M is safe for all formulas in T and M 
 �

for all � 2 T .

REMARKS

(1) M ¼ hW ,U, e,�i is safe for Pð’ j �Þ iff ½��W 6¼ ; iff M 6
 :�
(2) M ¼ hW ,U, e,�i is safe for a modal formula � iff M is so for every elementary modal

subformula of �.

The notion of logical entailment relative to a class of structures M, written 
M, is then
defined as follows:

T 
M � iff M 
 � for each M 2 M model of T which is safe for �:

If M denotes the whole class of conditional probability Kripke structures we shall write
T 
FCP �. When 
M � holds we will say that � is valid inM, i.e. when � gets value 1 in all
structures M 2 M safe for �.

REMARK


M � does not mean eM ð�Þ ¼ 1 in each structure M 2 M, but only in those structures
which are safe for �.

LEMMA 3.4
Axioms FCP1-FCP5 are valid in the class of conditional probability Kripke structures.

PROOF. The proof is very similar to the one given in [22](8.4.5) for unconditional probability.
Let M ¼ ðW ,U, e,�Þ be a conditional probability structure which we will subsequently
assume below to be safe for the different formulas corresponding to (instances of) the axioms.

7This possibility of having the evaluation of a modal formula as undefined, and its consequences, was

missing in [36].
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Then it is easy to check that the validity of each axiom in M amounts to a corresponding
property of �: (FCP3), (FCP4) and (FCP5) directly correspond to the three axioms of
conditional probability given in Definition 1.1. Actually, the validity of (FCP3) amounts
to the additivity of �ð� j ½��W Þ. The cases of (FCP4) and (FCP5) are obvious. The
case of (FCP2) is also a consequence of the additivity of �ð� j ½��W Þ. As for (FCP1), if
we simply write �ð’ j  Þ for �ð½’�W j ½ �W Þ and x ) y for minð1� x þ y, 1Þ, it amounts
to check �ð’!  j �Þ � �ð’ j �Þ ) �ð j �Þ. Put �ð’ ^  j �Þ ¼ a, �ð’ ^ : j �Þ ¼ b
and �ð:’ ^  j �Þ ¼ c. Then we have �ð’!  j �Þ ¼ 1� b � minð1� bþ c, 1Þ ¼
minð1� ðbþ aÞ þ ðc þ aÞ, 1Þ ¼ �ð’ j �Þ ) �ð j �Þ. g

LEMMA 3.5
The FCP(L�) inference rules preserve validity in a model.

PROOF. We need to check that the rule of substitution of equivalents and the necessitation
rule for P preserve validity in a model. Namely, let M ¼ ðW ,U, e,�Þ be such that
M 
 �$ �0 and M is safe for Pð’ j �Þ and Pð’ j �0Þ. Then, ½��W ¼ ½�0�W 6¼ ; and hence
obviously eðPð’ j �Þ,wÞ ¼ eðPð’ j �0Þ,wÞ for all w 2 W , that is, M 
 Pð’ j �Þ 
 Pð’ j �0Þ.

As for the necessitation rule, if we assumeM 
 ’ andM is safe for Pð’ j �Þ, then ½’�W ¼ W
and ½��W 6¼ ;, hence eðPð’ j �Þ,wÞ ¼ 1, that is M 
 Pð’ j �Þ. g

The two preceeding lemmas are the basis for the following soundness result.

PROPOSITION 3.5 (Soundness)
The logic FCP(L�) is sound with respect to the class of conditional probability Kripke
structures, i.e. if � ‘FCP � then � 
FCP �.

PROOF. Assume � ‘FCP � and recall Definition 3.2. If � is non-modal it is obvious, thus
assume � is modal. Now, let us assume � to be modal. Then, by lemmas 3.4 and 3.5, we also
have � 
FCP �. Finally, let � ¼ D [ T where D is non-modal and T modal. Let
M ¼ ðW ,U, e,�Þ be such that M 
 D [ T and M is safe for �, we have to show that
M 
 �. Since M is safe for �, it means that ½��W 6¼ ; for every � in atomic modal formulas
Pð� j �Þ appearing in �. On the other hand, since M 
 D, then ½ �W ¼ W for every
 2 ConðDÞ. This means that M 
 DP , hence M 
 T [DP . But now T [ DP is a modal
theory, hence M 
 � as well. g

4 Extended completeness for FCP(L�)

The completeness result for FCP(L�) shown in [36] only considers (finite) modal theories,
that is, theories involving only probabilistic formulas. However it is worth considering
theories also including non-modal formulas since they can allow us to take into account
logical representations of the relationships between events. For instance, if ’ and  represent
incompatible events, we may want to include in our probabilistic theory the non-modal
formula :ð’ ^  Þ, or if the event represented by  is included in ’ then we may need to
include the formula  ! ’.

Let D � L be any given non-modal (propositional) theory (possibly empty). For any
’, 2 L, define ’ �D  iff ’$  follows from D in classical propositional logic, i.e. if
’$  2 ConðDÞ . The relation �D is an equivalence relation in L and ½’�D will denote the
equivalence class of ’. Obviously, the quotient set L=�D

forms a Boolean algebra which is
isomorphic to a subalgebra Bð�DÞ of the power set of the set �D of Boolean interpretations
of the crisp language L which are model of D8. For each ’ 2 L, we shall identify the
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equivalence class ½’�D with the set f! 2 �D j !ð’Þ ¼ 1g 2 Bð�DÞ of models of D that make ’
true. We shall denote by CPðDÞ the set of conditional probabilities over L=�D

� ðL=�D
n ½?�Þ

or, equivalently, on Bð�DÞ �Bð�DÞ
0.

Notice that each conditional probability � 2 CPðDÞ induces a conditional probability
Kripke structure h�D,Bð�DÞ, e�,�i where e�ðp,!Þ ¼ !ðpÞ 2 f0, 1g for each ! 2 �D and each
propositional variable p. We shall denote by MD the class of probabilistic Kripke structures
which are models of D, by CPðDÞ the class of conditional probabilities defined on
Bð�DÞ �Bð�DÞ

0, and by CPSðDÞ the class of probabilistic Kripke models
fð�D,Bð�DÞ, e�,�Þ j � 2 CPðDÞg. Obviously, CPSðDÞ � MD.

Abusing the language, we will say that a conditional probability � 2 CPðDÞ is a model of a
modal theory T whenever the induced Kripke structure h�D,Bð�DÞ, e�,�i is a model of T
(obviously h�D,Bð�DÞ, e�,�i is a model of D as well).

Given the above notions, we now prove the probabilistic completeness of FCP(L�) with
respect to finite arbitrary theories, hence extending the result given in [36] for modal
theories.

THEOREM 4.1 (Extended finite probabilistic completeness of FCP(L�))
Let T be a finite modal theory over FCP(L�), D a finite propositional theory and � a modal
formula with the following constraint: any modal formula Pð’ j �Þ appearing (as subformula)
in T [ f�g is such that :� 62 ConðDÞ. Then T [D ‘FCP � iff e�ð�Þ ¼ 1 for each conditional
probability � 2 CPðDÞ model of T.

PROOF. Soundness is clear (see Proposition 3.6). For completeness, the proof below is an
adaptation of the proof of [36, Th.2], which in turn follows [20, 22]. The basic idea consists in
transforming modal theories over FCP(L�) into theories over L�1

2 and then taking
advantage of the L�1

2-completeness.
Define a theory over L�1

2, called F , as follows:

(1) take as new propositional variables, variables of the form f’j�, where ’ and � are classical
propositions from L and � 2 SatðLÞ

(2) take as axioms of the theory the following ones, for each ’,  and �:
(F1) f’j�, for ’ 2 ConðDÞ and � such that :� 62 ConðDÞ.
(F2) f’j� 
 f’j�0 , for any �,�

0 2 such that :�,:�0 62 ConðDÞ,�$ �0 2 ConðDÞ

(F3) f’! j� !L ðf’j� !L f j�Þ,
(F4) f:’j� 
 :Lf’j�,
(F5) f’_ j� 
 ½ðf’j� !L f’^ j�Þ !L f j��,
(F6) f’^ j� 
 f j’^� � f’j�.
(F7) f’j’,
where in all formulas of the kind f’j�, it is assumed that � 2 SatðLÞ.

Define a mapping � from FCP(L�) modal formulas to L�1
2 -formulas as follows:

(1) ðPð’ j �ÞÞ� ¼ f’j�
(2) r� ¼ r
(3) ð� ��Þ

�
¼ �� ���, for � 2 f&, !L , � , !�g

8Actually, Bð�DÞ ¼ ff! 2 �D j !ð’Þ ¼ 1g j ’ 2 Lg. Needless to say, if the language has only finitely many

propositional variables then the algebra Bð�DÞ is just the whole power set of �D , otherwise it is a strict subalgebra.
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Let us denote by T* and ðDPÞ
� the set of all translated formulas from T and DP respectively.

Then, by the construction of F and ðDPÞ
�, one can easily check that for any �,

T [D ‘FCP � iff T� [ F [ ðDPÞ
�
‘L�1

2
��: ð1Þ

Notice that in a proof from T� [ F [ ðDPÞ
� the use of instances of ðF1Þ and ðF2Þ corresponds

to the use of inference rules of necessitation for P and of substitution of equivalents in
FCP(L�), while instances of ðF3Þ � ðF7Þ obviously correspond to axioms (FCP1) - (FCP5)
respectively.

Now we prove that the semantical analogue of (1) also holds, that is,

T [D 
FCP � iff T� [ F [ ðDPÞ
�

L�1

2
��: ð2Þ

Assume T� [ F [ ðDPÞ
�
6
L�1

2
��. This means that there exists an L�1

2-evaluation e which
is model of T� [ F [ ðDPÞ

� such that eð��Þ < 1. We show that there is a Kripke structure
Me ¼ ð�D,Bð�DÞ, e

0,�eÞ which is a model of T [D, safe for � and Me 6
 �. Define:

� �e : Bð�DÞ �Bð�DÞ
0
! ½0, 1� as follows:

�eð½’��D
j ½���D

Þ ¼ eðf’j�Þ:

for each ’,� 2 L such that :� 62 ConðDÞ (hence ½���D
6¼ ;).

� e0ðp,wÞ ¼ wðpÞ for each propositional variable p

Since by hypothesis e is a model of F , it is easy to see that �e is indeed a conditional
probability. Moreover, so defined, Me is clearly a model of D, it is safe for all formulas of
T [ f�g (because of the precondition in the theorem) and moreover, by construction,
e0ð�,wÞ ¼ eð��Þ for any modal formula � 2 T [ f�g, hence e0ð�,wÞ ¼ 1 for all � 2 T and
eð�,wÞ < 1. Thus, Me 
 T but Me 6
 �.

Conversely, assume T [D 6
FCP �, that is, assume there is a conditional probability
Kripke structure M ¼ ðW ,U, e,�Þ which is a model of T [D (hence safe for T), safe for �
but M 6
 �. Thus, M is also a model of DP since for each Pð’ j �Þ 2 DP , ½’�W ¼ W and
½��W 6¼ ; and hence �ð½’�W j ½��W Þ ¼ 1. We show that there also exists an L�1

2-evaluation vM
model of T� [ F [ ðDPÞ

� such that vM ð��Þ ¼ eð�,wÞ for each modal formula � and each
w 2 W . To do this, take an arbitrary w 2 W, and define:

vM ðpÞ ¼ eðp,wÞ,

vM ðf’j�Þ ¼
eðPð’ j �ÞÞ ¼ �ð½’�W j ½��W Þ, if ½��W 6¼ ;

arbitrary, otherwise
:

�

Clearly vM ð’Þ ¼ 1 for each ’ 2 D, and vM is a model of axioms F1� F7 since � is a
conditional probability. Finally one can easily check that for each modal formula � 2 T [DP

we have vM ð��Þ ¼ eð�,wÞ since this value is defined (M is safe for T [ f�g, hence also
for DP), and moreover it only depends on �. Therefore vM ð��Þ ¼ 1 for
every �� 2 T� [ F [ ðDPÞ

� but vM ð��Þ < 1, as desired. Hence we have proved the
equivalence (2).
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From (1) and (2), to prove the theorem it remains to show that

T� [ F [ ðDPÞ
�
‘L�1

2
�� iff T� [ F [ ðDPÞ

�

L�1

2
��:

Note that L�1
2 is strongly complete but only for finite theories. Here the initial theories T and

D are finite, so is T�. However F contains infinitely many instances of axioms F1� F7 and
ðDPÞ

� also contains infinitely many formulas since Con(D) is so. Nonetheless one can prove
that such infinitely many formulas can be safely replaced by only finitely many, by using
propositional normal forms, following the lines of [22, 8.4.12].

Indeed, take n propositional variables p1, . . . , pn containing at least all variables in T [D.
For any formula ’ built from these propositional variables, take the corresponding
disjunctive normal form ð’Þdnf . Notice that there are only finitely many different such
formulas. Then, when translating a modal formula � into ��, we replace each atom f’j� by
fð’Þdnf jð�Þdnf to obtain its normal translation ��

dnf . The theory T�
dnf is the (finite) set of all �

�
dnf

with � 2 T , and ðDPÞ
�
dnf is the (finite) set of all ��

dnf with � 2 DP . The theory F dnf is the
finite set of instances of axioms F1� F7 for disjunctive normal forms of Boolean formulas
built from the propositional variables p1, . . . , pn. We can now prove the following
equivalences:

(i) T� [ F [ ðDPÞ
�
‘L�1

2
�� iff T�

dnf [ F dnf [ ðDPÞ
�
dnf ‘L�1

2
��

dnf .
(ii) T� [ F [ ðDPÞ

�

L�1

2
�� iff T�

dnf [ F dnf [ ðDPÞ
�
dnf 
L�1

2
��

dnf .

The proof of (i) and (ii) is similar to that provided in [22, 8.4.13]. Finally, we obtain the
following chain of equivalences:

T [D ‘FCP � iff T� [ F [ ðDPÞ
�
‘L�1

2
�� by ð1Þ

iff T�
dnf [ F dnf [ ðDPÞ

�
dnf ‘L�1

2
��

dnf by ðiÞ above

iff T�
dnf [ F dnf [ ðDPÞ

�
dnf 
L�1

2
��

dnf by L� 1
2 � finite strong compl:

iff T� [ F [ ðDPÞ
�

L�1

2
�� by ðiiÞ above

iff T [D 
FCP � by ð2Þ:

This completes the proof of the theorem. g

Similarly to the case of modal theories (see [36]), we have the following interesting types of
deduction. If T is a finite (modal) conditional theory over FCP(L�), D is a propositional
(non-modal) theory, and ’ and � are non-modal formulas, with :� 62 ConðDÞ, then we have:

(i) T [D ‘FCP �r ! Pð’ j �Þ iff �ð’ j �Þ � r , for each conditional probability � 2 CPðDÞ

model of T;
(ii) T [D ‘FCP Pð’ j �Þ ! �r iff �ð’ j �Þ � r , for each conditional probability � 2 CPðDÞ

model of T.

EXAMPLE 4.2
As examples of interesting deductions with propositional theories, consider the following
ones.

–  ! ’ ‘FCP Pð’ j  Þ, for  2 SatðLÞ.
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Indeed, by the necessitation rule  ! ’ ‘FCP Pð ! ’ j  Þ, and by axiom (FCP1),
’!  ‘FCP Pð j  Þ !L Pð’ j  Þ. Finally, using axiom (FCP5) and modus ponens we
get  ! ’ ‘FCP Pð’ j  Þ.

– Let T be a probabilistic theory. If T ‘ Pð’ j  ^ �Þ then T [ f�g ‘FCP Pð’ j  Þ. In fact,
assume T ‘FCP Pð’ j  ^ �Þ, hence T [ f�g ‘FCP Pð’ j  ^ �Þ as well. Clearly, by the
necessitation rule T [ f�g ‘FCP Pð� j  Þ, and now by axiom (FCP4)
T [ f�g ‘FCP Pð’ ^ � j  Þ. Since ’ ^ �! ’ is a Boolean tautology, by the necessitation
rule we have ‘FCP Pð’ ^ �! ’ j  Þ, and by axiom (FCP1) and modus ponens we get
‘FCP Pð’ ^ � j  Þ !L Pð’ j �Þ, and finally by modus ponens with Pð’ ^ � j  Þ we get
T [ f�g ‘FCP Pð’ j  Þ.

5 Consistency, coherent assessments and lower conditional
probability

Following de Finetti’s research, one of the most important features of the conditional
probability approach developed by Coletti and Scozzafava in [10] is based on the possibility
of reasoning only from partial conditional probability assessments to an arbitrary family of
conditional events (without requiring in principle any specific algebraic structure). However,
it must be checked whether such assessments minimally agree with the rules of conditional
probability. This consists in requiring that an assessment can be extended at least to a proper
conditional probability over U � U0, where U is the whole Boolean algebra generated by
those conditional events, and it is called coherence.

First of all, we need to stress out the relationship between Coletti and Scozzafava’s
framework and our logical framework FCP(L�). In [10], the authors use a set-
theoretical language and speak about conditional events as pairs of the form EjH , where
E and H are basically considered as sets in a (possibly indeterminate) Boolean algebra. Here
we model conditional events as pairs ’j where ’ and  are propositions. So, when dealing
with sets of conditional events, possibly implicit relationships between (simple) events as sets
(e.g. inclusion, incompatibility) need to be explicitly modelled in our framework in a separate
way by means of a set of formulas relating the propositions defining the conditional objects.
Accordingly, a family of conditional events in [10]’s framework corresponds to a family
C ¼ f’i j �igi2I of conditional objects together with an associated propositional theory DC

standing for the (possible) logical relationships among the ’i’s and  i’s (see Example 5.3).
As usual, we also assume that the conditioning propositions �i’s are not in contradiction with
the theory DC, i.e. we assume :�i 62 ConðDCÞ for all i 2 I . In what follows we will exploit this
parallelism to rephrase some results of [10] in our language.

DEFINITION 5.1 (Coherence [10])
A probabilistic assessment � : C ! ½0, 1� over a family of conditional events
C ¼ f’i j �i : i ¼ 1, . . . ,ng is coherent if there is a conditional probability � on
Bð½DC�Þ �Bð½DC�Þ

0, in the sense of Definition 1.1, such that �ð’i j �iÞ ¼ �ð’i j �iÞ for all
i ¼ 1, . . . ,n.

An important result by Coletti and Scozzafava is the characterization of the coherence of
an assessment in terms of the existence of a suitable class of simple (non-conditional)
coherent probabilities. Indeed, it is shown in [10] that given a set of conditional events, any
coherent assessment over such a set can be represented by a family of classical conditional
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probabilities each of them generated by a class of simple assessments, each one defined over
subsets of the atoms of the algebra (see [10, Th. 4]).

In [36] we showed that the notion of coherence of a probabilistic assessment (restricted to
rational values) to a set of conditional events is tantamount to the consistency of a suitably
defined theory over FCP(L�)9.

THEOREM 5.2 ([36])
Let � be a rational assessment to a family of conditional events C ¼ f’i j �i : i ¼ 1, . . . ,ng. Let
�i ¼ �ð’i j �iÞ, for i ¼ 1, . . . ,n. Then � is coherent iff the theory
T� ¼ fPð’i j �iÞ 
 �i : i ¼ 1, . . . ,ng [ DC is consistent in FCP(L�), i.e. T� [DC 6‘FCP

�0.

EXAMPLE 5.3
Suppose you are calling your friend Sally at her cell phone and consider the following events:

’: Sally hears the phone ringing
 Sally is out
�: The cell phone is at home
�: Sally answers the call

You know Sally’s apartment is small so it is easy for her to hear the phone when ringing,
and it is usually the case that if she does not answer it is because she has forgotten to take the
cell phone when she is going out. This allows you, considering the set of conditional events
C ¼ f’j: , ^ �j:�g, to make the following conditional probability assessment
� : C ! ½0, 1�, with �ð’ j : Þ ¼ 0:9, �ð ^ � j :�Þ ¼ 0:7. On the other hand, it is clear that
if Sally is out, and she has left her cell phone at home, she cannot hear the phone ringing, and
hence she cannot answer the call either. In other words, this means that if  and � are true
logically implies that ’ cannot be true, and this in turn implies that � that cannot be true.
All this information is modelled in our logic FCP(L�) by both the modal theory

T� ¼ fPð’ j : Þ 
 0:9,Pð ^ � j :�Þ 
 0:7g

and the propositional theory

DC ¼ f ^ �! :’, �! ’g,

the latter making explicit the implicit relationships among the events (assuming these are all
we know). The coherence of the assessment � is then equivalent to the consistency of the
theory T� [DC in the logic FCP(L�), i.e. to the fact that T� [DC 6‘FCP 0. Notice that the
consideration of the non-modal theory DC together with the probabilistic (modal) theory T�
is very important, for instance from T� [DC, we can derive in FCP(L�) formulas like
Pð’ j :�Þ !L 0:3 or Pð� j : Þ !L 0:9, which we cannot derive from T� alone.

Sometimes, we might not be able to assess precise conditional probability values
for a family of conditional events, but we can rather provide just a vector of lower (or upper)
bounds for those values. In such situations where we have to deal with imprecise

9A very similar result was provided by Flaminio and Montagna in [15] in the framework of their logic FP(SL�).
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assessments of probabilities, the notion of coherence has been naturally generalized by
Biazzo and Gilio10.

DEFINITION 5.4 (Generalized Coherence [4, 19])
Let C ¼ f’1j�1, . . . , ’nj�ng be a family of conditional events. A probabilistic assessment of
lower values � : C ! ½0, 1� on C is said to be g-coherent iff there exists a (precise) coherent
assessment � : C ! ½0, 1� which is consistent with �, that is, such that �ð’ij�iÞ � �ð’ij�iÞ for
each i.

The above definition also works when dealing with upper bounds and with intervals. Indeed,
for any conditional event ’j�, such that �ð’j�Þ � �, we have the inequality �ð:’j�Þ � 1� �.
Therefore, we can determine g-coherence in the presence of interval-valued assessments
�ð’i j�iÞ ¼ ½�i,�i� standing for constraints of the type

�i � Prð’ij�iÞ � �i:

In the following theorem we prove that the generalized coherence of any imprecise rational
assessment of conditional probabilities coincides with the consistency of a suitably defined
theory over FCP(L�). In the following I½0, 1� denotes the set of closed intervals in ½0, 1�.

THEOREM 5.5
Let �g : C ! I½0, 1�, be a rational generalized probabilistic assessment on a family
C ¼ f’1j�1, . . . , ’nj�ng of conditional events. Let �gð’i j �iÞ ¼ ½�i,�i�. Then �

g is g-coherent
iff the theory T�g ¼ fð�i !L Pð’i j �iÞÞ&ðPð’i j �iÞ !L �iÞ j i ¼ 1, . . . ,ng [ DC is
consistent in FCP(L�), i.e. iff T�g 6‘FCP

�0.

PROOF. Suppose T�g is consistent. Then, by completeness of FCP(L�), the class of models of
T�g is non-empty. Then if Mj ¼ h�DC

,Bð�DC
Þ, e�,�i is one of such models,

then �i � �ð’i j �iÞ � �i. Hence the assessment �ð’i j �iÞ ¼ �ð’i j �iÞ is coherent, hence �g

is g-coherent.
Conversely, suppose that �g is g-coherent. Then, there exists a conditional probability � on

Bð�DC
Þ �Bð�DC

Þ
0 such that �ð’ij�iÞ 2 ½�i,�i�. This probability � induces a probabilistic

Kripke structure h�DC
,Bð�DC

Þ, e�,�i that is a model of T�g . g

Finally, let us remark that in [10] the authors also deal with the notion of coherent lower
and upper conditional probability. Given an arbitrary set C of conditional events, a coherent
lower (upper) conditional probability on C is an assessment � : C ! ½0, 1� (resp. an
assessment � : C ! ½0, 1�) such that there exists a non-empty dominating family
P ¼ f�ð�j�Þg of coherent conditional probabilities on C whose lower (resp. upper) envelope is
� (resp. �), that is, for every ’j 2 C,

�ð’j Þ ¼ inf�2P �ð’j Þ ðresp: � ð’j Þ ¼ sup�2P �ð’j ÞÞ:

Moreover, they show that if C is finite, there exists a dominating family P0 � P such that
�ð’j Þ ¼ min�2P0 �ð’j Þ (resp. �ð’j Þ ¼ max�2P0 �ð’j Þ). These notions also have a

10Notice that the notion of coherence used in [4, 19] is actually given in terms of random gains using de Finetti’s

betting scheme, but shown to be equivalent to the ones given in Definitions 5.1 and 5.4.
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corresponding representation in FCP(L�). Indeed, given a finite modal theory T and a
propositional theory D, one can compute in FCP(L�), for each conditional object ’j , the
greatest lower bound and the lowest upper bound for the coherent probability values induced
by T [D. Indeed, let

�ð’j Þ ¼ supfr j T [D ‘FCP r !L Pð’ j  Þg,

�ð’j Þ ¼ inffs j T [D ‘FCP Pð’ j  Þ !L sg:

It is not difficult to check that � and � are coherent lower and upper probabilities in the above
sense. By the finite strong completeness of L�1

2, when the above infimum and supremum are
rational numbers, they actually become a minimum and a maximum respectively. In such a
case it then holds

T [D ‘FCP �!L Pð’ j  Þ and T [ D ‘FCP Pð’ j  Þ !L �,

where � ¼ �ð’j Þ and � ¼ �ð’j Þ.

6 Compactness of coherent assessments

Very recently, Flaminio has shown [16] the compactness of coherent probabilistic
assessments to conditional events, both under Flaminio and Montagna’s probabilistic logic
FP(SL�) and under our logic FCP(L�). In particular, for FCP(L�), he provides the
following theorem.

THEOREM 6.1 (Compactness)
Let us consider a modal theory T ¼ fPð’i j  iÞ 
 �igi2I over FCP(L�). Then T is satisfiable
iff every finite subtheory of T is satisfiable.

The proof is based on the well-known theorems of Los on the ultraproduct model and on the
related theorem of compactness. Roughly speaking, what Los shows is how to define a model
for an arbitrary set of formulas out of models of their finite subsets. Particularized to our
framework, Los’ theorem reads as follows.

THEOREM 6.2 (cf. [7])
Let � be an arbitrary theory over FCP(L�). Let S!ð�Þ ¼ fTigi2I be the (countable) set of all
finite subtheories of �, and for every i 2 I, let Mi be a conditional probabilistic Kripke
structure model of Ti. Then, there exists an ultrafilter11 F over I such that the ultraproduct
structure12 ð

Q
i2I

MiÞ=F is a model of �.

This result would directly lead to the compactness of consistency in FCP(L�) if the
ultraproduct model ð

Q
i2I MiÞ=F was a conditional probabilistic Kripke structure of the

class. Unfortunately, the class of conditional probabilistic Kripke structures is not

11Recall that, given a non-empty set S, an ultrafilter F over S is a collection of subsets of S such that ; 2 F ; if

A;B 2 F then A \ B 2 F ; if A 2 F and A � B, then B 2 F ; and for each A � S , either A 2 F or Ac 2 F .
12See next paragraph for the definition of this structure.
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closed under ultraproduct. Indeed, if Mi ¼ ðWi,U i,�i, eiÞ then the ultraproduct structure
ð
Q

i2I MiÞ=F is a structure ðW ,U,��, eÞ, where:

(i) W ¼
Q

i2I Wi=F is the direct product of the Wi’s modulo F
13 ;

(ii) U ¼
Q

i2I U i=F is again the direct product of the U i’s modulo F ;
(iii) �� : U � U0 ! ½0, 1�� is a non-standard conditional probability, where ½0, 1�� denotes the

ultrapower of ½0, 1� modulo F , and ��ðA j BÞ is defined as the F -equivalence class of
ð�1ðA1 j B1Þ,�2ðA2 j B2Þ, . . .Þ where the Ai’s and Bi’s are the i-th projections of A and B
respectively;

(iv) e : L �W ! f0, 1g is defined as eð’,wÞ ¼ 1 if fi 2 I j eið’,wiÞ ¼ 1g 2 F , eð’,wÞ ¼ 0,
otherwise.

However, as Flaminio shows, by letting � be the standard part of the non-standard
conditional probability ��, the structure ðW ,U,�, eÞ becomes a (standard) conditional
probabilistic Kripke structure which is still model of �.

Now, it is not difficult to check that Flaminio’s proof also works for more general kinds of
theories involving L�1

2 connectives with continuous truth-functions, i.e., Lukasiewicz
connectives and Product conjunction.

THEOREM 6.3 (General Compactness)
Let T be a modal theory over FCP(L�) whose formulas only involve (at most) truth-
constants and the &, !L ,� connectives. Then T is satisfiable iff every finite subtheory of T
is satisfiable.

PROOF. Left-to-right direction is easy. To prove the converse, suppose that every finite
subtheory Ti of T is satisfiable. Then, for any Ti there exists some model Mi such that
Mi
Ti. Then, by the above Los theorem 6.2 there exists an ultrafilter F such thatQ

i2I Mi=F 
 T . However, as mentioned, the model obtained is based on a non-standard
probability ��, so is the evaluation e�� . Still, like in [16] we can get a standard model by
recovering the standard part, so if St denotes the standard part, we define eð�Þ ¼ Stðe�� ð�ÞÞ.
Then eð� ��Þ ¼ Stðe�� ð� ��ÞÞ ¼ Stðe�� ð�ÞÞ � Stðe�� ð�ÞÞ, for � 2 f&, !L ,�g. The respect
of the behavior of the connectives is guaranteed by the continuity of their related truth-
functions. Then the ‘‘standardized’’ structure conserves the necessary requirements for being
a model of T. g

A parallel result for Flaminio and Montagna’s logic FP(SL�) also holds.
Following the above strategy we can also prove compactness for generalized coherence

[4, 19]. This corresponds to state compactness of coherence for interval-valued conditional
probability assessments of the kind

� ¼ f�i � Prð’i j  iÞ � �igi2I ;

which amounts in turn to compactness for the consistency of the theory

T ¼ f�i !L Pð’i j  iÞ,Pð’i j  iÞ !L �igi2I :

Now, given Theorem 6.3, we directly have as a consequence the following corollary.

13
ðw1;w2; . . .Þ; ðw

0
1;w

0
2; . . .Þ 2

Q
i2I Wi are equivalent modulo F iff fi 2 I j wi ¼ w0

ig 2 F .
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COROLLARY 6.4
Let T ¼ f�i !L Pð’i j  iÞ,Pð’i j  iÞ !L �igi2I be a modal theory in FCP(L�). Then T is
consistent iff every finite subtheory of T is consistent.

This corollary clearly yields as a direct consequence the following result of compactness for
generalized coherent probabilistic assessments to conditional events (in e.g. [10] such a result
is mentioned for single-valued coherent assessments).

THEOREM 6.5 (Compactness of Imprecise Coherent Assessments)
Let �g : C ! I½0, 1� be an imprecise assessment of conditional probability over a class of
conditional events C ¼ f’i j  igi2I with rational bounds, i.e. for each i 2 I , if
�gð’i j  iÞ ¼ ½�i,�i� then �i,�i 2 Q. For every finite subset J of C, let �g"J denote the
restriction of �g to J . Then

�g is g � coherent iff for every finite J � C , �g"J is g � coherent:

These compactness results directly refer to the probabilistic logics FCP(L�) and
FP(SL�) without mentioning a possible similar result for the base logic L�1

2. A study of
compactness of many fuzzy logics was presented by Cintula and Navara in [9]. The notion
of satisfiability proposed there generalizes the classical one, since it admits various degrees of
simultaneous satisfiability.

DEFINITION 6.6 ([9])
For a set � of formulas in a fuzzy logic and K � ½0, 1�, we say that � is K-satisfiable is
there exists an evaluation e such that eð’Þ 2 K for all ’ 2 �: The set � is said to be finitely
K-satisfiable if each finite subset of � is K-satisfiable. A logic is said to be K-compact
if K-satisfiability is equivalent to finite K-satisfiability. A logic satisfies the compactness
property if it is K-compact for each closed subset K of [0, 1].

In particular Cintula and Navara comment that the same proof they provide for the
compactness of Lukasiewicz logic (originally proved by Butnariu, Klement and Zafrany [6])
also works for other fuzzy logics with connectives interpreted by continuous functions.

THEOREM 6.7 ([9, 6])
Let L be any fuzzy logic whose connectives only have continuous truth-functions. Then L has
the compactness property.

The proof in [9] runs as follows. Assume the language of L is built from a countable set Var
of propositional variables. Let � a theory over L such that every finite subset �0 is
K-satisfiable. For each ’ 2 �; define H’ : ½0, 1�

Var
! ½0, 1� by H’ðeÞ ¼ eð’Þ, which is

continuous by hypothesis. Then H�1
’ ðKÞ is a closed subset of ½0, 1�Var , which is compact in

the product topology. Since �0 is K-satisfiable, the intersection \’2�0H�1
’ ðKÞ is non-empty for

every finite �0 ��, hence by compactness of ½0, 1�Var , \’2�H
�1
’ ðKÞ is non-empty as well. Then

any evaluation e in this intersection is such that eð’Þ 2 K for all ’ 2 �: Since the important
point in the proof is that the functions H’ are continuous, the following corollary is a direct
consequence of the above theorem.

COROLLARY 6.8
Let T be a theory in a given fuzzy logic L whose formulas only involve connectives having
continuous truth-functions. Then the compactness property holds w.r.t. T.
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Such a corollary can be clearly applied to the continuous fragment of L�1
2. Now,

considering that the completeness proof of FCP(L�) shows that one can translate a modal
theory over FCP(L�) into a theory over L�1

2, we also obtain compactness results for modal
(probabilistic) theories over FCP(L�) which do not involve the product implication
connective !�. Therefore, all the above results concerning compactness can be proved also
by relying on the fact that in such theories only continuous truth-functions are involved.
Indeed, if T is any theory in FCP(L�) or in FP(SL�) such that product implication does not
appear in T and each of its finite subtheories is satisfiable, the by the above corollary T itself
is satisfiable. Such compactness is consequently transmitted to the respective probabilistic
assessments, easily yielding then the above compactness results for simple and generalized
conditional assessments.

7 Applications to knowledge representation

It is worth pointing out that the logic FCP(L�) is actually very powerful from a knowledge
representation point of view. Indeed, it allows to express several kinds of statements about
conditional probability, from purely comparative staments like ‘‘the conditional event ’ j � is
at least as probable as the conditional event  j �’’ as

Pð j �Þ !L Pð’ j �Þ,

or numerical probability statements like

– ‘‘the probability of ’ j � is 0.8’’ as Pð’ j �Þ 
 0:8,
– ‘‘the probability of ’ j � is at least 0.8’’ as 0:8 !L Pð’ j �Þ,
– ‘‘the probability of ’ j � is at most 0.8’’ as Pð’ j �Þ !L 0:8,
– ‘‘’ j � has positive probability’’ as :�:�Pð’ j �Þ,

or even staments about independence, like ‘‘’ and  are independent given �’’ as

Pð’ j � ^  Þ 
 Pð’ j �Þ:

Another interesting issue is the possibility of modelling default reasoning by means of
conditional events and probabilities. This has been largely explored in the literature.
Actually, from a semantical point of view, the logical framework that FCP(L�) offers is very
close to the so-called model-theoretic probabilistic logic in the sense of Biazzo et al’s approach
[5], and the links established there to probabilistic reasoning under coherence and default
reasoning14. Actually, FCP(L�) can provide a (syntactical) deductive system for such a rich
framework.

Here, following the work on default reasoning proposed in [10] in the framework of coherent
conditional probability, we show how to define over FCP(L�) a notion of default rule and
default entailment using the deductive machinery of FCP(L�). First we introduce the basic
notions for treating defaults w.r.t. coherent conditional probabilities. Then, we develop the
related logical treatment, exploiting the tools provided by FCP(L�). These two approaches
will be shown to be equivalent when we take into account only rational assessments.

14See also [39] for another recent probabilistic logic approach to model defaults.
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As stressed out above, in [10] the authors use a set-theoretical language and treat
conditional events as pairs EjH , where E and H are basically considered as sets in a (possibly
indeterminate) Boolean algebra. Here we model conditional events as pairs ’j where ’ and
 are propositions. So, we model in our framework the implicit relationships between simple
events by framing them into a set of formulas.

Now, let � be a coherent assessment of conditional probability on C. According to the above
section this means that there exists at least one conditional probability � on Bð�0Þ �Bð�0Þ

0,
where �0 ¼ �DC

, extending �, that is, �ð’i j �iÞ ¼ �ð’i j �iÞ for each i 2 I . Let Eð�Þ be the
set of coherent conditional probabilities extending �. In this context, a conditional object
’j� is called a default when the coherent assessment � univocally determines that its
probability is 1.

DEFINITION 7.1
Given a coherent assessment � over a class of conditional events C, a conditional object ’j� is
a default with respect to �, written �;�’, if for any � 2 Eð�Þ we have �ð’ j �Þ ¼ 1.

Actually, ;� defines a consequence relation among events (propositional formulas) which,
due to the possibility of coherent conditional probabilities of assigning zero probabilities to
the conditioning events, enjoys the core properties of nonmonotonic reasoning characterizing
the system P [10] of preferential entailment:

(1) Reflexivity: ’;�’:
(2) Left logical equivalence: if ’$  2 TautðLÞ and ’;�� then  ;��:
(3) Right weakening: if ’!  2 TautðLÞ and �;�’ then �;� .
(4) And: if ’;� and ’;�� then ’;� ^ �.
(5) Cautious Monotonicity: if ’;� and ’;�� then ’ ^  ;��.
(6) Or: if ’;�� and  ;�� then ’ _  ;��.

We shift now to FCP(L�). Here, given a modal theory T and a propositional theory D, we
define a default w.r.t. the pair ðT ,DÞ, as any modal formula Pð’ j �Þ which follows from
T [D.

DEFINITION 7.2
Given a modal theory T and a propositional theory D over FCP(L�) a modal formula
Pð’ j �Þ is a default with respect to T [D, written �;

T ,D
’, iff T [D ‘FCP Pð’ j �Þ.

It is now easy to show that ;T ,D is a preferential consequence relation (see e.g. [33]).

THEOREM 7.3
;

T ,D
is a preferential consequence relation, i.e. it satisfies the above six properties

characterizing system P.

PROOF. For proving the corresponding properties it suffices to check that the following
deductions hold in FCP(L�)

(1) Reflexivity: ‘FCP Pð’ j ’Þ;
(2) Left logical equivalence: fð’$  Þ,Pð� j ’Þg ‘FCP Pð� j  Þ;
(3) Right weakening: fð’!  Þ,Pð’ j �Þg ‘FCP Pð j �Þ;
(4) And: fPð j ’Þ,Pð� j ’Þg ‘FCP Pð ^ � j ’Þ;
(5) Cautious Monotonicity: fPð j ’Þ,Pð� j ’Þg ‘FCP Pð� j ’ ^  Þ;
(6) Or: fPð� j ’Þ,Pð� j  Þg ‘FCP Pð� j ’ _  Þ.
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It is easy to check that (1) holds by FCP5 and (2) by the substitution of equivalents rule. As
for (3), by necessitation for P we have Pð’!  j �Þ which, along with FCP1 and Pð’ j �Þ, by
applying modus ponens, implies Pð j �Þ.

As for (4), notice that  ! ð�! ð ^ �ÞÞ 2 TautðLÞ. By necessitation for P
we obtain ‘FCP Pð ! ð�! ð ^ �ÞÞ j ’Þ. Now, by FCP1 and modus ponens (twice)
we get ‘FCP Pð j ’Þ !L Pðð�!  ^ �Þj’Þ and Pð� j ’Þ !L Pð ^ � j ’Þ, hence
fPð j ’Þ,Pð� j ’Þg ‘FCP Pð ^ � j ’Þ.

As for (5), by FCP4 we have ‘FCP Pð� ^  j ’Þ 
 Pð� j ’ ^  Þ � Pð j ’Þ,
hence ‘FCP Pð� ^  j ’Þ !L Pð� j ’ ^  Þ � Pð j ’Þ as well. By (4), fPð j ’Þ,Pð� j ’Þg
‘FCP Pð ^ � j ’Þ, then by modus ponens, fPð j ’Þ,Pð� j ’Þg ‘FCP Pð� j ’ ^  Þ � Pð j ’Þ,
hence fPð j ’Þ,Pð� j ’Þg ‘FCP Pð� j ’ ^  Þ as well, since ��� !L � is a theorem of L�1

2.
Finally, let us consider (6). Notice that the following equivalences Pð� j ’ _  Þ 


Pð� ^ ð’ _  Þ j ’ _  Þ 
 Pðð� ^ ’Þ _ ð� ^  Þ j ’ _  Þ are provable in FCP(L�). By
FCP3, ‘FCP Pðð� ^ ’Þ _ ð� ^  Þ j ’ _  Þ 
 ðPð� ^ ’ j ’ _  Þ !L Pð’ ^  ^ � j ’ _  ÞÞ !L

Pð� ^  j ’ _  Þ. By FCP4, we have ‘FCP Pð� ^ ’ j ’ _  Þ 
 Pð� j ’Þ � Pð’ j ’ _  Þ,
‘FCP Pð� ^  j ’ _  Þ 
 Pð� j  Þ � Pð j ’ _  Þ, and ‘FCP Pð’ ^  ^ � j ’ _  Þ 

Pð� j ’ ^  Þ � Pð’ ^  j ’ _  Þ. Now, by the premises and the foregoing, it is easy to
check that

fPð� j ’Þ,Pð� j  Þg ‘FCP ð
�
Þ

Pð� j ’ _  Þ 
 ðPð’ j ’ _  Þ !L Pð� j ’ ^  Þ � Pð’ ^  j ’ _  ÞÞ !L Pð j ’ _  Þ:

On the other hand, since ‘FCP Pð’ _  j ’ _  Þ and, by FCP3, ‘FCP Pð’ _  j ’ _  Þ 

ðPð’ j ’ _  Þ !L Pð’ ^  j ’ _  ÞÞ !L Pð j ’ _  Þ, we also have ‘FCP ðPð’ j ’ _  Þ !L

Pð’ ^  j ’ _  ÞÞ !L Pð j ’ _  Þ. Since ð� !L �� �Þ !L ð� !L �Þ is a theorem of L�1
2

we also have ‘FCP ðPð’ j ’ _  Þ !L Pð� j ’ ^  Þ � Pð’ ^  j ’ _  ÞÞ !L Pð j ’ _  Þ.
Finally, from this and (*) one can conclude that fPð� j ’Þ,Pð� j  Þg ‘FCP Pð� j ’ _  Þ,
which proves (6). g

We can define now a natural notion of default entailment. Let K ¼ f�i ;’igi2I be a
conditional knowledge-base. We define a corresponding theory in FCP(L�) by putting
TK ¼ fPð’i j �iÞgi2I .

DEFINITION 7.4
A default �; follows from K, written K ‘�

FCP
�; , iff TK ‘FCP Pð j �Þ.

As a direct consequence we have the following corollary.

COROLLARY 7.5
The inference rules of system P are sound w.r.t. ‘�

FCP
.

Now, due to FCP(L�)-probabilistic completeness, the notions of default for coherent
assessments and defaults over FCP(L�) clearly are strictly related. Indeed they can be
shown to be equivalent. However, once again, we must take into account only rational
assessments, since we cannot represent reals in FCP(L�)-theories. The following results
strengthen the idea that FCP(L�) strongly captures the concept of coherent conditional
probability.
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THEOREM 7.6
Let C ¼ f’i j �igi2I be a finite family of conditional events, let � be a rational coherent
probability assessment on C. Define the following theory T ¼ fPð’i j �iÞ 

�i j i 2 I ,�i ¼ �ð’i j  iÞg over FCP(L�). Then the following condition holds:

�;�’ iff �;T ,DC
’:

PROOF. Suppose that �;�’. This means that for any conditional probability � 2 Eð�Þ,
�ð’ j �Þ ¼ 1. But, by definition, �;�’ iff Eð�Þ is the set of probability models of T defined on
�DC

, hence T [DC 
FCP Pð’ j �Þ, and by completeness, iff T [DC ‘FCP Pð’ j �Þ, hence iff
�;T ,DC

’. g

Following Lehmann and Magidor’s ideas [33], we can also define rational consequence
relations with coherent probabilistic semantics (actually, in [33] they use non-standard
probabilistic models). So as to do it, we need to fix a single probabilistic Kripke structure
M ¼ hW ,U,�, ei and then define the following consequence relation ;M on propositional
(non-modal) formulas:

’;M iff M 
 Pð j ’Þ;

or equivalently, iff �ð½ �W j ½’�W Þ ¼ 1 (assuming ½’�W 6¼ ;). This consequence relation can be
easily shown to be also a preferential relation, but moreover it can be shown to satisfy the
further rational property:

7. Rational Monotonicity15: if ’;M and ’ 6;M:� then ’ ^ �;M ,

where the notation ’ 6;M means that the pair ð’, Þ is not in the consequence relation ;M,
i.e. that M 6
 Pð j ’Þ, i.e. that �ð j ’Þ < 1. This is a consequence of the validity of the
following derivation in FCP(L�): fPð j ’Þ,:L�Pð:� j ’Þg ‘FCP Pð j ’ ^ �Þ. Notice that
Rational Monotonicity does not hold in general for the notion of default introduced in
Definition 7.2.

8 Conclusions

In this paper we have investigated several aspects of the fuzzy modal logic FCP(L�) which
allows reasoning about coherent conditional probability in the sense of de Finetti.
To conclude, we would like to point out some open problems which deserve further
investigations.

First, it remains to be studied whether we could use logics weaker than L�1
2. Indeed, we

could define, as above, a conditional probability logic over L� (i.e. without rational truth-
constants in the language), yielding a kind of qualitative probability logic where we could
reason for instance about comparative and conditional probability independence statements.
Notice that a notion of ’ being probable when ’ is more probable than :’, as considered in
[29], could also still be defined in such a logic by the formula rðPð’ j >Þ 	 Pð:’ j >ÞÞ.

15The same property has been presented in the literature under different, but equivalent, formulations. After

Adams (see e.g. [1, 19]), it is also known as Disjunctive Weak Rational Monotony.
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Second, we plan to study in more detail the links among FCP(L�) and different kinds of
probabilistic nonmonotonic consequence relations as those defined by Lukasiewicz in [34, 35].
In fact, in that framework, a (strict or defeasible) conditional constraint ð j’Þ½l,u�
syntactically corresponds to the FCP(L�)-formula ðl !L Pð j ’ÞÞ&ðPð j ’Þ !L uÞ.
We think FCP(L�) may provide a suitable framework where to define and compare the
different notions of probabilistic default reasoning introduced in [35]. Finally, possible links
to the very recent work by Arló-Costa and Parikh [2] on conditional probability and
deafeasible reasoning deserve attention.
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