The modular structure of an ontology: atomic decomposition
Chiara Del Vescovo, Thomas Schneider, Bijan Parsia and Uli Sattler
Extracting a subset of a given ontology that captures all the ontology's knowledge about a specified set of terms is a well-understood task. This task can be based, for instance, on locality-based modules. However, a single module does not allow us to understand neither topicality, connectedness, structure, or superfluous parts of an ontology, nor agreement between actual and intended modeling. The strong logical properties of locality-based modules suggest that the family of all such modules of an ontology can support comprehension of the ontology as a whole. However, extracting that family is not feasible, since the number of locality-based modules of an ontology can be exponential w.r.t. its size. In this paper we report on a new approach that enables us to efficiently extract a polynomial representation of the family of all locality-based modules of an ontology. We also describe the fundamental algorithm to pursue this task, and report on experiments carried out and results obtained.