A Competitive Strategy for Function Approximation in Q-Learning
Alejandro Agostini and Enric Celaya
In this work we propose an approach for generalization in continuous domain RL that, instead of using a single function approximator, tries many different function approximators in parallel, each one defined in a different region of the domain. Associated with each approximator is a relevance function that locally quantifies the quality of its approximation, so that, at each input point, the approximator with highest relevance can be selected. The relevance function is defined using parametric estimations of the sample variance and sample density in the input space, which are used to quantify the accuracy and the confidence in the approximation, respectively. These parametric estimations are obtained from a probability density distribution represented as a Gaussian Mixture Model embedded in the input-output space of each approximator. In our experiments, the proposed approach required a lesser number of experiences for learning and produced more stable convergence profiles than when using a single function approximator.