

Solving Distributed FCSPs with Naming Games!

Stefano Bistarrelli1,2, Giorgio Gosti3 and Francesco Santini1

1 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Italy
[bista,francesco.santini]@dipmat.unipg.it
2 Istituto di Informatica e Telematica (IIT-CNR), Pisa, Italy

stefano.bistarelli@iit.cnr.it
3 Institute for Mathematical Behavioral Sciences, University Of California, Irvine, USA

ggosti@uci.edu

Abstract. Constraint Satisfaction Problems (CSPs) are the formalization of a
large range of problems that emerge from computer science. The solving method-
ology described here is based on theNaming Game (NG). The NGwas introduced
to represent N agents that have to bootstrap an agreement on a name to give to
an object (i.e. a word). In this paper we focus on solving Distributed FCSPs with
an algorithm for NGs: each word on which the agents have to agree on is asso-
ciated with a preference represented as a fuzzy score. The solution is the agreed
word associated with the highest preference value. The two main features that
distinguish this methodology from other DisFCSP solving methods are that the
system can react to small instance changes and and it does not require pre-agreed
agent/variable ordering.

1 Introduction

This paper presents a distributed method to solve Distrubuted Fuzzy Constraint Satis-
faction Problems (DisFCSPs) [11, 15, 8, 9, 14] that comes from a generalization of the
Naming Game (NG) model [12, 1, 10, 7]. DisFSCPs can be applied to deal with resource
allocation, collaborative scheduling and distributed negotiation [8].

In DisFCSP protocols, the aim is to design a distributed architecture of processors,
or more generally a group of agents, who cooperate to solve a fuzzy CSP instantiation.
In this framework, we see the problem as a dynamic system and we select the stable
states of the system as the solutions to our CSP. To do this we design each agent so that
it will move towards a stable local state. This system may be called “self-stabilizing”
whenever the global stable state is obtained through the reinforcement of the local stable
states [6]. When the system finds the stable state, the DisFCSP instantiation is solved.
A protocol designed in this way is resistant to damage and external threats because it
can react to changes in the problem instance. Moreover, in our approach all agents have
equal chance to reveal private information.

! Research partially supported by the MIUR PRIN 20089M932N: “Innovative and multi-
disciplinary approaches for constraint and preference reasoning”, by CCOS FLOSS project
“Software open source per la gestione dell’epigrafia dei corpus di lingue antiche”’, and by
INDAM GNCS project “Fairness, Equità e Linguaggi”.

171

The NGs describe a set of problems in which a number of agents bootstrap a com-
monly agreed name for one or more objects. In this paper we discuss a NG general-
ization in which agents have individual fuzzy preferences over words. This is a natural
generalization of the NG, because it models the endogenous agents’s preferences and
attitudes towards certain object naming system. Moreover, we add binary fuzzy con-
straints that represent exogenous causes that effect the agents preferences. As shown
in [3, 4], a NG can be viewed as a particular crisp CSP instance. But, if we add pref-
erence levels and constraints, the NG is no longer a crisp combinatorial problem: this
new game may be interpreted as an optimization problem.

This paper extends the results of [3, 4] in which non-fuzzy DCSPs are solved with
NGs. The paper is organized as follows: in Sec. 2 we present the background on NGs.
Section 3 presents the algorithm in order to solve DisFCSPs. Then, Sec. 4 presents the
tests and the results for the fuzzy NG algorithm. At last, Sec. 5 summarizes the related
work and Sec. 6 reports the conclusions and ideas about future work.

2 Background on Naming Games

The NGs [12, 1, 10, 7] describe a set of problems in which a number of agents bootstrap
a commonly agreed name for one or more objects. The game is played by a population
of N agents which play pairwise interactions in order to negotiate conventions, i.e.
associations between forms and meanings, and it is able to describe the emergence of a
global consensus among them. For the sake of simplicity the model does not take into
account the possibility of homonyms, so that all meanings are independent and one can
work with only one of them, without loss of generality. An example of such a game is
that of a population that has to reach the consensus on the name (i.e. the form) to assign
to an object (i.e. the meaning) exploiting only local interactions. However, as it will be
clear, the model is appropriate to address all those situations in which negotiation rules
a decision process (i.e. opinion dynamics, etc.) [1].

Each NG is defined by an interaction protocol. There are two important aspects of
the NG: the agents randomly interact and use a simple set of rules to update their state;
the agents converge to a consistent state in which the object has assigned a uniquely
name, by using a distributed social strategy.

Generally, at each turn, two agents are randomly extracted to perform the role of
the speaker and the listener (or hearer as used in [12, 1]). The interaction between the
speaker and the listener determines the agents’ update of their internal state. DCSPs and
NGs share a variety of common features [3, 4].

The definition of Self-stabilizing algorithm in distributed computing was first in-
troduced by [6]. A system is self-stabilizing whenever, each system configuration as-
sociated with a solution is an absorbing state (global stable state), and any initial state
of the system is in the basin of attraction of at least one solution. In a self-stabilizing
algorithm, we program the agents of our distributed system to interact with their neigh-
bors. The agents update their state through these interactions by trying to find a stable
state in their neighborhood. Since the algorithm is distributed many legal configura-
tions of the agents’ states and their neighbors’ states start arising sparsely. Not all of
these configurations are mutually compatible, and so they form mutually inconsistent

172

potential cliques. The self-stabilizing algorithm must find a way to make the global le-
gal state emerge from the competition between these potential cliques. Dijkstra [6] and
Collin [5] suggest that an algorithm designed in this way can not always converge, and
a special agent is needed to break the system symmetry. More precisely, Dijkstra [6]
and Collin [5] show that we can not guarantee that a system of uniform finite state ma-
chines can always solve the ring ordering problem. However, in [4] the authors show
that an naming game based algorithm with homogeneous agents can find the ring or-
dering problem solution with probability 1.

3 Solving DisFCSPs with Naming Games

As in [15], we assign to each variable xi ∈ X of the DisFCSP P = 〈X,D,C,A〉, an
agent ai ∈ A. We assume that each agent knows all the constraints that act over its X
variables [15]. Each agent i = 1, 2, . . . , N (where |A| = N) searches its own variable
domain di ∈ D for its variable assignment that optimizes P . The degree of satisfac-
tion of a fuzzy constraint tells us to what extent it is satisfied. Otherwise stated, the
goal of the game is to make the agents find an assignment of their variables that max-
imizes the overall fuzzy score result for the problem; fuzzy preferences of constraints
are combined withmin function.

We restrict ourselves only to unary and binary constraints. Each agent has a unary
constraint ci with support defined over its variable xi ∈ X ; this unary constraints rep-
resent the local preference of the agents for each variable assignment di ∈ D. Any
binary constraint ci,j returns a preference value p ∈ [0, 1] which states the combined
preference over the assignment of xi and xj together. η[ai := b] is the set of all possible
assignments of the variables in X such that variable ai is assigned b. cai

η[ai := b] rep-
resents the preference level of agent ai for assignment b, and cai,aj

η[ai := b, aj := d]
represents combined preference level of agents ai and aj for the respective assignments
b and d. In the following, we will use the

⊗
symbol to directly perform the composi-

tion of fuzzy constraints, and c{s} to denote the set of constraints that act over s. Thus,
maxb∈Ds

(
⊗

c{s}η[s := b]) defines the best fuzzy level that an agent can take given
its knowledge of the surrounding constraints and its assignment b. Respectively, top
is the set of domain assignments with the maximum fuzzy value of

⊗
c{s}η[s := b],

top = {b ∈ Ds|b = argmaxb∈Ds
(
⊗

c{s}η[s := b])}. We may say that the communi-
cation network is determined by the network of binary constraints, since we suppose an
agent ai ∈ A can communicate only with the aj ∈ A agents sharing a binary constraint,
i.e. ci,j ∈ C.

At the beginning, each agent marks an element b that maximizes
⊗

c{s}η[s := b],
this is the elements that the agents prefers to be in the final solution. At each turn, the
algorithm is based on two entities: a single speaker, which communicates in broadcast
its choice on the word and the related fuzzy preference and a set of listeners. The listen-
ers are all the agents that share a constraint with the speaker. At each turn t, an agent is
drawn with uniform probability to be the speaker. In the following we describe in detail
each step of the interaction scheme that defines the behavior between the speaker and
the listeners: we consider three phases, i) broadcast, ii) feedback and iii) update.

173

3.1 Interaction Protocol

Broadcast The speaker s executes the broadcast protocol. The speaker checks if the
marked variable assigment b is in top. If the marked variable assignment is not in top
it selects a new variable assignment b with uniform probability from top, and marks it.
Then it sends the couple (b,max

b∈Ds

(
⊗

c{s}η[s := b])) to all its neighboring listeners.

Feedback All the listeners receive the broadcast message (b, u) from the speaker. Each
listener l computes ∀dk,

⊗
c{s,l}η[s := b][l = dk] (let’ us call this value vk for any

chosen dk), that is it computes the combination of the fuzzy preferences (i.e. vk) for
each dk assignment, supposing that s chooses word b. Each listener sends back to s a
feedback message according to the following two cases:

– Failure. If u > max
k

(vk) there is a failure, and the listener feedbacks a failure
message containing the maximum value and the corresponding assignment for l,
Fail(max

k
(vk), l = dk).

– Success. If u ≤ max
k

(vk), there is a success, the listener feedbacks Succ.

Update The listener’s feedback determines the update of the listener and of the speaker.
When the listener feedbacks a Succ, then the listener also lower the preference level for
all the vk with a higher preference value: ∀vk.vk > u then it sets vk = u. If the speaker
receives only Succ feedback messages from all its listeners, then it does not need to
update.

Otherwise, that is if the speaker receives a number of Fail(vj, lj = dj) feed-
back messages from h listeners (with h ≥ 1 and 1 ≤ j ≤ h), then it selects the
worst vw fuzzy preference such that ∀j, vw ≤ vj . Then it sends to all listeners a
FailUpdate(c{lw}η[lw := bw]). Thus, the speaker sets its assignment to b with the
worst fuzzy preference level among the failure feedback messages of the listeners, i.e.
c{s}η[s := b] = vw. In addition, each listener l sets vl = vw, i.e. c{s,l}η[s := b][l :=
dl] = vw.

3.2 Theorems

With Lemma 1 we state that a subset of constraints C′ ⊆ C has a higher fuzzy prefer-
ence w.r.t. C. We say that a fuzzy constraint problem is α-consistent if it can be solved
with a level of satisfiability of at least α (see also [2]).

Lemma 1 ([2]). Consider a set of constraints C and any subset C′ of C. Then we have⊗
C ≤

⊗
C′.

The speaker selection rule defines a probability distribution function F that tells us
the probability that a certain domain assignment is selected.

⊗
c{s}η[s := b]) and the

marked word determine F . In Lemma 2 we relate F to the convergence of the algorithm
with probability 1, related to the level of satisfiability of the problem.

174

Lemma 2. If the F function selects only the domain elements with preference level
larger then α, then the algorithm converges with probability 1, only if Sol(P) ≥ α.

From [3, 4], if the F function chooses a random element in the word domain, then
the algorithm converges to the same word, but this word could not be the optimal one,
i.e. the word with the highest fuzzy preference. If we choose F in order to select only
words with a preference greater than α, then the algorithm converges to a solution with
a global preference greater than α.

With Prop. 1 and Prop. 2 we prepare the background for the main theorem of this
section, i.e. Th. 1. Proposition 1 shows the stabilization of the algorithm after some
time, while Prop. 2 states that the algorithm converges with a probability of 1.

Proposition 1. For time t → +∞, the weight associated to the optimal solution is
equal for all the agents, and its equal to the minimum preference level of that word.

Proposition 2. For any probability distribution F the algorithm converges with a prob-
ability of 1.

At last, we state that the presented algorithm always converge to the best solution
of the DisFCSP.

Theorem 1. Since i) the algorithm always converges (see Prop. 2) and ii) by choosing
a function F according to Lem. 2, the algorithm in 3.2 always converges to the best
fuzzy solution, i.e. to the solution with the highest preference possible.

4 Experimental results

To evaluate the runs we define the probability of a successful interaction at time, Pt(succ),
given the state of the system at that time. Pt(succ) is determined by the probability that
an agent is a speaker at time t, and the probability that agent’s interaction is a success
Pt(succ|s = ai), Pt(succ) =

∑
Pt(succ|s = ai)P (s = ai). The Pt(succ|s = ai)

depend on the state of the agent at time t. In particular it depends on the variable as-
signment (or word) b selected by F , and if c{s}η[s := b] ≤ c{l}η[l := b]. Given an
algorithm run, at each time t we can compute Pt(succ|s = ai) over the states of all
agents before that the interaction is performed. Since P (s = ai) = 1/N , we can com-
pute Pt(succ) =

∑
Pt(succ|s = ai)/N .

For our benchmark, let us define a RandomFuzzy NG instance (RFNG). To generate
such an instance, we assign to each agent the same domain of names D, and for each
agent and each agent’s name we draw a preference level between [0, 1] from a unifom
distribution. Moreover, RFNG can only have crisp binary equality constraints. We also
define the Path RFNG Instance [4] which is a RFNG instance, in which the constraint
network is a path graph. A path graph (or linear graph) is a particularly simple example
of a tree, which has two terminal vertices (vertices that have degree 1), while all others
(if any) have degree 2.

We generated 5 such random instances, with 10 agents and 10 words each. For each
one of these instances, we computed using a brutal force algorithm the best preference
level and the word associated to this solution. Then, we ran this algorithm 10 times on

175

each instance. To decide when the algorithm finds the solution, a graph crawler checks
the agents’ marked words, and their marked words preferences. If all the agents agree
on the marked variable, this means they find an agreement on the name. Then, the graph
crawler checks if the shared word has a preference level equal to the best preference, in
such case we conclude that the algorithm has found the optimal solution.

In Fig. 1 we measure the evolution in time of Pt(succ) for the path RFNG instance.
When Pt(succ) = 1, all interactions are going to be successful, thus we are in an
absorbing state, which from Th. 1, we know it is also a solution.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Pt(succ)

t

Run 1
Run 2
Run 3
Run 4
Run 5

Fig. 1. Evolution of the mean Pt(succ) over 5 different path RFNG instances. For each instance,
we computed the mean Pt(succ) over 10 different runs. We set N = 10, and the number of
words to 10.

In Fig. 2, we show the scaling of the mean number of messages MNM needed
to the system to find a solution for different numbers of N variables in the path RFNG
instances. For eachN , theMNM was measured over 5 different path RFNG instances.
We notice that the points approximately overlaps the function cN1.8.

5 Related Work

Whilst a number of approaches have been proposed to solve DCSPs [11, 15] or cen-
tralized FCSP [11] alone, only a few work is related to the combination of DCSPs and
fuzzy CSPs. It is important to notice the fundamental difference with the DCSP al-
gorithms designed by Yokoo [15]. Yokoo addresses three fundamental kinds of DCSP
algorithms: Asynchronous Backtracking, Asynchronous weak-commitment Search and
Distributed Breakout Algorithm [15]. Although these algorithms share the property of
being asynchronous, they require a pre-agreed agent/variable ordering. The algorithm
presented in this paper does not need this initial condition.

DisFCSPs has been of interest to the Multi-Agent System community, especially in
the context of distributed resource allocation, collaborative scheduling, and negotiation

176

100

1000

10000

100000

1e+06

1e+07

1e+08

10 100 1000

MNM

N

Path RFNG

♦♦♦♦♦

♦♦
♦♦♦

♦♦
♦♦
♦

♦
♦♦♦♦

♦
♦♦
♦♦

♦
cN

a

Fig. 2. Scaling of the mean number of messagesMNM needed to the system to find a solution
for different numbers of variables N in path RFNG instances. For each N , the MNM was
measured over 5 different path RFNG instances. We notice that the points approximately overlap
the function cN1.8.

(e.g. [8]). Those works focus on bilateral negotiations and when many agents take part,
a central coordinating agent may be required. For example, the work in [8] promotes a
rotating coordinating agent which acts as a central point to evaluate different proposals
sent by other agents. Hence the network model employed in those work is not totally
distributed.

In [13, 14] the authors define the fuzzy GENET model for solving binary FCSPs.
Fuzzy GENET is a neural networkmodel for solving binary FCSPs. Through transform-
ing FCSPs into [0, 1] integer programming problems, they display the equivalence be-
tween the underlyingworking mechanism of fuzzy GENET and the discrete Lagrangian
method. Benchmarking results confirm its feasibility in tackling CSPs and flexibility in
dealing with over-constrained problems.

In [9] the authors propose two approaches to solve these problems: An iterative
method and an adaptation of the Asynchronous Distributed constraint OPTimization
algorithm (ADOPT) for solving DisFCSP. They also present experiments on the perfor-
mance comparison of the two approaches, showing that ADOPT is more suitable for
low density problems (density = num of links / number of agents).

6 Conclusions and Future Work

In this paper we have shown howNG problems [12, 1, 10, 7] can be extended with fuzzy
preferences over words in order to solve a generic instance of a DisFCSP [11, 15, 8, 9,
14]. In the study, of such an algorithm we try to fully exploit the power of distributed
calculation. Our algorithm is based on the random exploration of the system state space:
it travels through the possible states until it finds the absorbing state, where it stabilizes.
These goals are achieved through the union of new topics addressed in statistical physics
(the NG), and the abstract framework posed by constraint solving.

177

In other words, we show that a DisFCSP algorithm may work without a predeter-
mined agent ordering, and can probabilistically solve instances that where not thought
to be solvable by such algorithms. Moreover, in the real world, a predetermined agent
ordering may be a quite restrictive assumption. Hence, it is very important to explore
and understand how such distributed systems may work and what problems may exist.

In future work, we intend to evaluate an asynchronous version of this algorithm in
depth, and to test it using other comparison metrics, such as communication cost (num-
ber of message sent), NCCCs (number of non-concurrent constraint checks). Moreover,
we would like to compare our algorithm against other distributed and asynchronous al-
gorithms, such as the fuzzy GENET, and the fuzzy ADOPT. Furthermore, we will try
to generalize it to generic semiring-based CSP instances [2], and not only fuzzy CSPs.

References

1. A. Baronchelli, M. Felici, E. Caglioti, V. Loreto, and L. Steels. Sharp transition towards
shared vocabularies in multi-agent systems. CoRR, abs/physics/0509075, 2005.

2. S. Bistarelli. Semirings for Soft Constraint Solving and Programming, volume 2962 of
LNCS. Springer, 2004.

3. S. Bistarelli and G. Gosti. Solving CSPs with naming games. In A. Oddi, F. Fages, and
F. Rossi, editors, CSCLP, volume 5655 of LNCS, pages 16–32. Springer, 2008.

4. S. Bistarelli and G. Gosti. Solving distributed CSPs probabilistically. Fundam. Inform.,
105(1-2):57–78, 2010.

5. Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed constraint satisfaction. In
IJCAI, pages 318–324, 1991.

6. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17:643–644, November 1974.

7. N. L. Komarova, K. A. Jameson, and L. Narens. Evolutionary models of color categorization
based on discrimination. Journal of Mathematical Psychology, 51(6):359 – 382, 2007.

8. X. Luo, N. R. Jennings, N. Shadbolt, H. Leung, , and J. H. Lee. A fuzzy constraint based
model for bilateral, multi-issue negotiations in semi-competitive environments. Artif. Intell.,
148:53–102, August 2003.

9. X. T. Nguyen and R. Kowalczyk. On solving distributed fuzzy constraint satisfaction prob-
lems with agents. In Proceedings of the 2007 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, IAT ’07, pages 387–390. IEEE Computer Society, 2007.

10. M. A. Nowak, J. B. Plotkin, and D. C. Krakauer. The evolutionary language game. Journal
of Theoretical Biology, 200(2):147–162, September 1999.

11. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Foundations of
Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

12. L. Steels. A self-organizing spatial vocabulary. Artificial Life, 2(3):319–332, 1995.
13. J. Wong, K. Ng, and H. Leung. A stochastic approach to solving fuzzy constraint satisfaction

problems. In Eugene Freuder, editor, Principles and Practice of Constraint Programming,
volume 1118 of LNCS, pages 568–569. Springer, 1996. 10.1007/3-540-61551-2-119.

14. J. H. Y. Wong and H. Leung. Extending genet to solve fuzzy constraint satisfaction problems.
In Artificial intelligence/Innovative applications of artificial intelligence, AAAI ’98 IAAI
’98, pages 380–385, Menlo Park, CA, USA, 1998. AAAI.

15. M. Yokoo and K. Hirayama. Algorithms for distributed constraint satisfaction: A review.
Autonomous Agents and Multi-Agent Systems, 3:185–207, June 2000.

178

On Improving MUS Extraction Algorithms

Joao Marques-Silva1,2 and Inês Lynce2

1 University College Dublin
jpms@ucd.ie

2 INESC-ID/IST, TU Lisbon
ines@sat.inesc-id.pt

Abstract. Minimally Unsatisfiable Subformulas (MUS) find a wide
range of practical applications, including product configuration,
knowledge-based validation, and hardware and software design and ver-
ification. MUSes also find application in recent Maximum Satisfiability
algorithms and in CNF formula redundancy removal. Besides direct ap-
plications in Propositional Logic, algorithms for MUS extraction have
been applied to more expressive logics. This paper proposes two algo-
rithms for MUS extraction. The first algorithm is optimal in its class,
meaning that it requires the smallest number of calls to a SAT solver.
The second algorithm extends earlier work, but implements a number of
new techniques. The resulting algorithms achieve significant performance
gains with respect to state of the art MUS extraction algorithms.

This paper appears in:

Karem A. Sakallah and Laurent Simon (eds.)
Proceedings of the 14th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2011).
Lecture Notes in Computer Science, volume 6695, pages 159–173.
Springer, 2011.

The full paper is available at:
http://dx.doi.org/10.1007/978-3-642-21581-0_14

Proceedings of the 18th RCRA workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion (RCRA 2011).
In conjunction with IJCAI 2011, Barcelona, Spain, July 17-18, 2011.

179

Applying UCT to Boolean Satisfiability

Alessandro Previti1, Raghuram Ramanujan2, Marco Schaerf1, and Bart Selman2

1 Dipartimento di Informatica e Sistemistica Antonio Ruberti
Sapienza, Università di Roma

Roma, Italy
elsandro84@gmail.com, marco.schaerf@uniroma1.it

2 Department of Computer Science
Cornell University
Ithaca, New York

{raghu, selman}@cs.cornell.edu

Abstract. In this paper, we investigate the feasibility of applying UCT-
style techniques to the satisfiability of CNF formulae. We develop a new
family of algorithms based on the idea of balancing exploitation (depth-
first search) and exploration (breadth-first search), combined with a
simple heuristic evaluation of nodes. We compare our algorithm with
a DPLL-based algorithm and WalkSAT, using the size of the tree and
the number of flips as the performance measure. While our approach per-
forms on par with DPLL on instances with little structure, it does quite
well on structured instances where it can effectively reuse information
gathered from one iteration on the next. We conclude with a discussion
of a number of avenues for future work.

This paper appears in:

Karem A. Sakallah and Laurent Simon (eds.)
Proceedings of the 14th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2011).
Lecture Notes in Computer Science, volume 6695, pages 373–374.
Springer, 2011.

The full paper is available at:
http://dx.doi.org/10.1007/978-3-642-21581-0_35

Proceedings of the 18th RCRA workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion (RCRA 2011).
In conjunction with IJCAI 2011, Barcelona, Spain, July 17-18, 2011.

180

An Efficient Hierarchical Parallel Genetic

Algorithm for Graph Coloring Problem

Reza Abbasian and Malek Mouhoub

Department of Computer Science
University of Regina

Regina, Canada
{abbasiar, mouhoubm}@cs.uregina.ca}

Abstract. Graph coloring problems (GCPs) are constraint optimization
problems with various applications including scheduling, time tabling,
and frequency allocation. The GCP consists in nding the minimum num-
ber of colors for coloring the graph vertices such that adjacent vertices
have distinct colors. We propose a parallel approach based on Hierar-
chical Parallel Genetic Algorithms (HPGAs) to solve the GCP. We also
propose a new extension to PGA, that is Genetic Modication (GM) op-
erator designed for solving constraint optimization problems by taking
advantage of the properties between variables and their relations. Our
proposed GM for solving the GCP is based on a novel Variable Ordering
Algorithm (VOA). In order to evaluate the performance of our new ap-
proach, we have conducted several experiments on GCP instances taken
from the well known DIMACS website. The results show that the pro-
posed approach has a high performance in time and quality of the so-
lution returned in solving graph coloring instances taken from DIMACS
website. The quality of the solution is measured here by comparing the
returned solution with the optimal one.

This paper appears in:

Natalio Krasnogor (ed.)

Proceedings of the 13th annual conference on Genetic and evolutionary compu-
tation (GECCO 2011), pages 521–528.

ACM, 2011.

The full paper is available at:

http://dx.doi.org/10.1145/2001576.2001648

Proceedings of the 18th RCRA workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion (RCRA 2011).
In conjunction with IJCAI 2011, Barcelona, Spain, July 17-18, 2011.

181

Checking Safety of Neural Networks with SMT
Solvers: a Comparative Evaluation

Luca Pulina1 and Armando Tacchella2

1
DEIS, Università di Sassari, Italy

lpulina@uniss.it
2
DIST, Università di Genova, Italy

Armando.Tacchella@unige.it

Abstract. In this paper we evaluate state-of-the-art SMT solvers on

encodings of verification problems involving Multi-Layer Perceptrons

(MLPs), a widely used type of neural network. Verification is a key tech-

nology to foster adoption of MLPs in safety-related applications, where

stringent requirements about performance and robustness must be en-

sured and demonstrated. In previous contributions, we have shown that

safety problems for MLPs can be attacked by solving Boolean combina-

tions of linear arithmetic constraints. However, the generated encodings

are hard for current state-of-the-art SMT solvers, limiting our ability to

verify MLPs in practice. The experimental results herewith presented

are meant to provide the community with a precise picture of current

achievements and standing open challenges in this intriguing application

domain.

This paper appears in:

R. Pirrone and F. Sorbello (eds.)
Proceedings of the 12th International Conference of the Italian Association for
Artificial Intelligence (AI*IA 2011).
Lecture Notes in Computer Science, volume 6934.
Springer, 2011.

Proceedings of the 18
th

RCRA workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion (RCRA 2011).

In conjunction with IJCAI 2011, Barcelona, Spain, July 17-18, 2011.

182

Plan Stability: Replanning versus Plan Repair

Maria Fox1, Alfonso Gerevini2, Derek Long1, and Ivan Serina2

1
Department of Computer and Information Sciences

University of Strathclyde, Glasgow, UK

rstname.lastname@cis.strath.ac.uk
2
Department of Electronics for Automation

University of Brescia, Italy

lastname@ing.unibs.it

Abstract. The ultimate objective in planning is to construct plans for

execution. However, when a plan is executed in a real environment it

can encounter differences between the expected and actual context of

execution. These differences can manifest as divergences between the

expected and observed states of the world, or as a change in the goals

to be achieved by the plan. In both cases, the old plan must be replaced

with a new one. In replacing the plan an important consideration is plan
stability. We compare two alternative strategies for achieving the stable
repair of a plan: one is simply to replan from scratch and the other is

to adapt the existing plan to the new context. We present arguments

to support the claim that plan stability is a valuable property. We then

propose an implementation, based on LPG, of a plan repair strategy

that adapts a plan to its new context. We demonstrate empirically that

our plan repair strategy achieves more stability than replanning and can

produce repaired plans more efficiently than replanning.

This paper appears in:

Derek Long, Stephen F. Smith, Daniel Borrajo, Lee McCluskey (eds.)
Proceedings of the 16th International Conference on Automated Planning and
Scheduling (ICAPS 2006), pages 212–221.
AAAI, 2006.

The full paper is available at:
http://www.aiconferences.org/ICAPS/2006/Papers/ICAPS06-022.pdf

Proceedings of the 18
th

RCRA workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion (RCRA 2011).

In conjunction with IJCAI 2011, Barcelona, Spain, July 17-18, 2011.

183

